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Abstract. The category of motives over the algebraic closure of a finite field is

known to be a semisimple Q-linear Tannakian category, but unless one assumes the

Tate conjecture there is little further one can say about it. However, once this con-
jecture is assumed, it is possible to give an almost entirely satisfactory description

of the category together with its standard fibre functors. In particular it is possible

to list properties of the category that characterize it up to equivalence and to prove

(without assuming any conjectures) that there does exist a category with these prop-

erties. The Hodge conjecture implies that there is a functor from the category of
CM-motives over Qal to the category of motives over F. We construct such a functor.

Contents

Introduction
Notations
1. Construction of the category of motives over a finite field 5
2. Basic properties of the category of motives over a finite field 13
3. Characterizations of the category of motives over F and its

fibre functors 33
4. The reduction of CM-motives to characteristic p 47
Bibliography

Introduction

After sketching the construction of the category of motives over a finite field or
its algebraic closure in §1, we develop the basic properties of the categories in §2
(under the assumption of the Tate conjecture). In particular we classify the simple
objects up to isomorphism and compute their endomorphism algebras. We show
that the category of motives over F has exactly two polarizations.
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In §3, we list properties of the category of motives over F together with the
structure provided by the Frobenius automorphisms sufficient to characterize it
uniquely up to equivalence, and we show (without any assumptions) that there
does exist a category with the properties. We also prove a similar result for the
category together with its standard fibre functors.

There is one other category of motives for which there is a similarly explicit
description, namely, the category of CM-motives over Qal. Conjecturally reduction
modulo p defines a tensor functor from this Tannakian category to that of motives
over the F. We construct such a reduction functor (assuming the Tate conjecture).

Beyond its intrinsic interest, the study of motives over finite fields gives a beau-
tiful illustration of the power of the Tannakian formalism in a nonelementary (i.e.,
nonneutral) case. Also the theory of motives over F provides the philosophical un-
derpinning for the conjecture of Langlands and Rapoport describing the points on
the reduction of a Shimura variety to characteristic p, which is the starting point of
Langlands’s program to realize the zeta functions of such varieties as automorphic
L-series.

Some Philosophy. Since we shall be describing a category with varying degrees
of definiteness, we discuss what this means.

Consider first an object X of a category. When we say that X (possibly plus
additional data) is determined by a property P we may mean one of several things:

(a) The object X (plus data) is uniquely determined by P , i.e., X is the only
object (plus data) satisfying P .

(b) The object X (plus data) is uniquely determined by P up to a unique
isomorphism, i.e., if Y (plus data) is a second object satisfying P , then
there is a unique isomorphism between X and Y (respecting the data) and
any morphism from one to the other (respecting the data) is an isomorphism.

(c) The object X (plus data) is uniquely determined by P up to isomorphism,
i.e., if Y (plus data) also satisfies P , then there exists an isomorphism be-
tween X and Y respecting the data, and any morphism from one to the
other (respecting the data) is an isomorphism.

For example, the algebraic closure of a field is determined in the sense (c), whereas
an object plus the data of a morphism is determined by a universal property in the
sense (b). For all intents and purposes, (b) is as good as (a)—for example, it allows
us to speak of a specific element of X−–but (c) is much weaker.

Similarly, when we say that a category C (plus data) is determined by a property
P we may mean one of several things:

(a) The category C (plus data) is uniquely determined by P .
(b) The category C (plus data) is uniquely determined by P up to a unique

equivalence (respecting the data).
(c) The categoryC (plus data) is uniquely determined by P up to an equivalence

(respecting the data) which itself is uniquely determined up to a unique
isomorphism (respecting the data).

(d) The category C (plus data) is uniquely determined by P up to an equiva-
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lence (respecting the data) which is uniquely determined up to isomorphism
(respecting the data).

(e) The categoryC (plus data) is uniquely determined by P up to an equivalence
(respecting the data).

For example, a Tannakian category is determined by its gerb of fibre functors
in the sense (b). For all intents and purposes, (c) is as good as (b) and (a)—for
example it allows us to speak of a specific object of C—but (d) is a little weaker
than (c), and (e) is much weaker than (d).

Acknowledgements. The notes at the end of each section discuss sources. In ad-
dition, it should be mentioned that much of the content of this article was probably
known to Grothendieck in the sixties. It is a pleasure to thank Deligne for his help
with the article.

Notations. Throughout, F is an algebraic closure of the field Fp, and Fq is the
subfield of F with q elements. The letter � denotes a prime of Q, possibly p or ∞.
The symbol kal denotes an algebraic closure of a field k. For Q, we take Qal to
be the algebraic closure of Q in C. Complex conjugation on C or any subfield is
denoted by ι or by z �→ z̄. We often use [∗] denote an equivalence class containing
∗.

The ring of adèles over Q is denoted by A; a subscript f on A indicates that
the infinite component has been omitted, and a superscript p indicates that the
component at p has been omitted.

For a prime w of a number field K, ‖ · ‖w denotes the normalized valuation at w.
An algebraic variety over a field k is a geometrically reduced scheme of finite-

type (not necessarily connected) over k. When V is an algebraic variety over Fq,
πV denotes the Frobenius automorphism of V relative to Fq: it acts as the identity
map on the underlying set of V , and it acts as f �→ fq on OV .

By a k-linear tensor category we mean a k-linear category T together with a k-
bilinear functor ⊗ : T×T→ T and sufficient constraints so that the tensor product
of any (unordered) set of objects of T is well defined up to a canonical isomor-
phism. This means that there is an identity object, an associativity constraint, and
a commutativity constraint satisfying certain axioms.

For an abelian category T, Σ(T) denotes the set of isomorphism classes of simple
objects in T, and K(T) denotes the Grothendieck group of T.

For a category T, Ind(T) denotes the category of direct systems of objects (Xα)
in T indexed by small directed sets with Hom defined by

Hom((Xα), (Yβ)) = lim←−
α

lim−→
β

Hom(Xα, Yβ).

For a perfect field k of characteristic p 
= 0, W (k) is the ring of Witt vectors
with coefficients in k, and K(k) is the field of fractions of W (k). The Frobenius
automorphism x �→ xp of k and its liftings to W (k) and K(k) are denoted by σ.
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When K is a finite field extension of k, (Gm)K/k is the torus over k obtained
from Gm over K by restriction of scalars. We write S for (Gm)C/R. For any affine
group scheme G over a field k, X∗(G) denotes the group of characters of G defined
over some algebraic closure of k.

When we say that a statement P (N) holds for all N >> 1, we mean that it
holds for all sufficiently divisible positive integers N , i.e., that there exists an N0
such that

N > 0, N ∈ N, N0|N =⇒ P (N) is true.

We use the following notations (see §1 for detailed definitions):
CV0(k): category of correspondences of degree 0.
HdgQ: category of polarizable rational Hodge structures.
Mot(k): category of motives over k.
Repk(G): category of representations of G on finite-dimensional vector spaces

over k.
V∞: category of graded complex vector spaces with a semilinear endomorphism

F such that F 2 = (−1)m on an object of weight m.
V�(Fq): category of semisimple continuous representations of Gal(F/Fq) on

finite-dimensional vector spaces over Q�.
V�(F) : category of germs of semisimple continuous representations of Gal(F/Fq)

on finite-dimensional vector spaces over Q�.
Vp(k): category of F -isocrystals over k.

§1. Construction of the Category of Motives over a Finite Field

Algebraic correspondences.
Fix a field k. For a smooth projective variety V over k, we define Zr(V ) (space
of algebraic cycles of codimension r on V ) to be the Q-vector space with basis the
closed irreducible subvarieties of V of codimension r, and we define Ar(V ) to be
the quotient of Zr(V ) by the subspace of cycles numerically equivalent to zero.
When all the irreducible components of V have dimension d and W is a second
smooth projective variety over k, the elements of Ad(V ×W ) are called algebraic
correspondences from V to W of degree 0. For example, the graph of a morphism
from W to V defines an algebraic correspondence from V to W of degree zero.

The category CV0(k) is constructed as follows: it has one object h(V ) for each
smooth projective variety V over k, and a morphism from h(V ) to h(W ) in CV0(k)
is an algebraic correspondence of degree 0 from V to W . Composition of morphisms
is defined by:

AdimU (U × V )× Adim V (V ×W ) −→ Adim U (U ×W ).

(a, b) �→ b ◦ a =df (pU×W )∗(p∗U×V (a) · p∗V×W (b))
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See (Saavedra 1972, p385). It is an additive Q-linear category, and V �→ h(V ) is
a contravariant functor from the category of smooth projective varieties over k to
CV0(k). There is a tensor structure on CV0(k) for which

h(V )⊗ h(W ) = h(V ×W )

and for which the commutativity and associativity constraints are defined by the
obvious isomorphisms

V ×W ≈W × V, U × (V ×W ) ≈ (U × V )×W.

On adding the images of projectors and inverting the Lefschetz motive, one obtains
the false category of motives M(k) over k (ibid. VI.4). This is a Q-linear tensor
category with duals, but it can not be Tannakian: in any tensor category with duals
there is a notion of the rank1 (or dimension) of an object, which is intrinsic, and
is therefore preserved by any tensor functor; hence, when a fibre functor exists, the
dimension of an object is a positive integer; but the dimension of h(V ) in M(k) is
the Euler-Poincaré characteristic (∆ ·∆) of V , which is often negative.

The category of motives over a finite field.

In order to obtain a Tannakian category, we must define a gradation on M(k) and
use it to modify the commutativity constraint. For a general field it has not been
proved that this is possible, but for a finite field we can proceed as follows. Let
V be a smooth projective variety of dimension d over a Fq, and let πV be the
Frobenius morphism of V over Fq. It follows from the results of Deligne on the
Weil conjectures (Deligne 1974) that for i = 0, 1, . . . , 2d there is a well-defined
polynomial Pi(T ) ∈ Q[T ] which is the characteristic polynomial of πV acting on the
étale cohomology group Hi(V ⊗ F,Q�) for any � 
= p,∞ (or on the corresponding
crystalline cohomology group (Katz and Messing 1974)). These polynomials are
relatively prime because their roots have different absolute values, and the graph of
the map

∏2d
i=0 Pi(πV ) is numerically equivalent to zero because it is homologically

equivalent to zero for any � 
= p,∞. The Chinese remainder theorem shows that
there are polynomials P i(T ) ∈ Q[T ] such that

P i(T ) ≡
{
1 mod Pi(T )

0 mod Pj(T ) for j 
= i.

The graph of pi =df P i(πV ) is a well-defined projector in Cd(V × V ), and

1 = p0 + p1 + · · · + p2d.

There is a unique gradation on M(k) for which

h(V ) = ⊕hi(V ), hi(V ) = Im(pi), all V.

1In the notation of the proof of (1.1), the rank of X is evX ◦ δ regarded as an element of k;

equivalently, in the notation introduced below, it is the trace of idX .
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We can now modify the commutativity constraint in M(Fq) as follows: write the
given commutativity constraint

ψ̇X,Y : X ⊗ Y → Y ⊗X,

as a direct sum,

ψ̇X,Y = ⊕ψ̇r,s, ψ̇r,s : Xr ⊗ Y s ≈−→ Y s ⊗Xr,

and define
ψX,Y = ⊕(−1)rsψ̇r,s.

Now
rankh(V ) =

∑
hi(V ) (rather than

∑
(−1)ihi(V )).

Write Mot(Fq) for M(Fq) with this new commutativity constraint. Its objects are
the motives over Fq.

Proposition 1.1. The tensor category Mot(Fq) is a semisimple Tannakian cate-
gory over Q.

Proof. By construction, it is a pseudo-abelian tensor category, and End(1) = Q.
As is explained in (Saavedra 1972, VI.4.1.3.5), duals exist, i.e., for every object
X of Mot(Fq), there is an object X∨ and morphisms evX : X ⊗ X∨ → 1 and
δ : 1→ X∨ ⊗X such that

(evX ⊗ idX) ◦ (idX ⊗δ) = idX , (idX∨ ⊗evX) ◦ (δ ⊗ idX∨) = idX∨ .

In fact, for an irreducible smooth projective variety V of dimension d, h(V )∨ =
h(V )(d) and evh(V ) is deduced from

h(V )⊗ h(V ) = h(V × V )
h(∆)−−−→ h(V ) p2d

−−→ h2d(V ) = Q(−d)

by tensoring with Q(d). Because we have worked with numerical equivalence,
(Jannsen 1992, Theorem 1) shows that Mot(Fq) is a semisimple abelian category.
Finally, because of our modification of the commutativity constraint, the rank of
every object of Mot(Fq) is a positive integer, and so (Deligne 1990, Theorem 7.1)
shows that Mot(Fq) is Tannakian. �

Let T be a Tannakian category over a field k. A fibre functor on T over a k-
algebra R is an exact k-linear tensor functor from T to the category of R-modules.
It automatically takes values in the category of projective R-modules of finite rank
and is faithful (unless R = 0), and for any X,Y ∈ ob(T) the map

Hom(X,Y )⊗R −→ HomR(ω(X), ω(Y ))

is injective (Deligne 1990, 2.10, 2.13.)
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Tate triples.

Recall (Deligne and Milne 1982, 5.1), that to give a Z-gradation on a Tannakian
category T is the same as to give a homomorphism w : Gm → Aut⊗(idT). A Tate
triple over a field F is a system (T, w, T ) consisting of a Tannakian category T over
F , a Z-gradation on T (called the weight gradation), and an invertible object T
(called the Tate object) of weight -2. For an object X of T and an integer n, we set
X(n) = X ⊗ T⊗n. A morphism of Tate triples

(T1, w1, T1) −→ (T2, w2, T2)

is a morphism of tensor categories T1 → T2 preserving the gradations together
with an isomorphism η(T1)→ T2.

Example 1.2. (a) The system (Mot(Fq), w, T ) with w the gradation defined above
and T the dual of the Lefschetz motive, T = h2(P1)∨, is a Tate triple over Q.

(b) By a rational Hodge structure we mean a finite-dimensional vector space V
over Q together with a homomorphism h : S → GL(V ⊗ R) such that the corre-
sponding weight map wh =df h−1|Gm is defined over Q. The category of ratio-
nal Hodge structures together with its natural weight gradation and Tate object
Q(1) =df (2πiQ, z �→ zz̄) is a Tate triple over Q.

Extension of coefficients.

Let (T,⊗) be a tensor category over a field k, and let L be a field containing k.
An L-module in T is an object X of T together with an k-linear homomorphism
L → End(X). A subobject of X is said to generate (X, i) if it is not contained in
any proper L-submodule of X.

Now assume T to be Tannakian, and consider the category Ind(T) of small
filtered direct systems of objects in T. Identify T with a full subcategory of Ind(T),
and define T ⊗ L to be the category whose objects are the L-modules in Ind(T)
generated by objects in T.

Properties.
(1.3.1) The category T ⊗ L has a natural tensor structure for which it is a

Tannakian category over L.
(1.3.2) There is a canonical tensor functor

X �→ X ⊗ L : T −→ T⊗ L

having the property that

Hom(X,Y )⊗ L = Hom(X ⊗ L, Y ⊗ L).

This functor is faithful, and when k has characteristic zero and T is
semisimple, T⊗ L is the pseudo-abelian envelope of its image.

(1.3.3) A fibre functor ω of T over R extends uniquely to a fibre functor ω ⊗ L
of T ⊗ L over R ⊗k L such that (ω ⊗ L)(X) = ω(X) ⊗k L for X in



8 J. S. MILNE

T. Moreover, the groupoid attached to (T ⊗ L,ω ⊗ L) is obtained from
that attached to (T, ω) by base change. (For the notion of the groupoid
attached to a Tannakian category, see Breen 1992, Deligne 1990, 1.12,
or 3.24 below.)

(1.3.4) Suppose that L is a finite extension of k. An L-module (X, i) of T is
generated as an L-module by X itself, and so can be regarded as an
object of T⊗L. In this way, T⊗L becomes identified with the category
of L-modules in T (cf. Deligne 1979, p321).

(1.3.5) The extension of scalars of a Tate triple is a Tate triple.

There is no good reference for these statements, but some can be obtained by
realizingT as the category of representation of a groupoid, and apply (Deligne 1989,
4.6iii). See also Saavedra 1972, p201.

Example 1.4. Let L be a field of characteristic zero, and replace Zr(V ) in the
construction of the category of motives over Fq with Zr(V ) ⊗ L. We then ob-
tain a semisimple Tannakian category Mot(Fq)L over L, called the category of
motives over Fq with coefficients in L. The obvious tensor functor Mot(Fq) →
Mot(Fq)L extends canonically to an equivalence of tensor categoriesMot(Fq)⊗L→
Mot(Fq)L.

Example 1.5. Let T be a Tannakian category over R. From T we obtain a Tan-
nakian category T⊗C over C, together with a semi-linear tensor functor

X �→ X̄ : T⊗ C→ T⊗C,

and a functorial isomorphism of tensor functors µX : X → ¯̄X such that µX̄ = µ̄X .
Conversely, every such triple (T′,X �→ X̄, µ) arises from a Tannakian category T
over R (the category T can be recovered from the triple as the category whose
objects are the pairs (X, a : X → X̄) such that ā ◦ a = µX).

From the point of view (1.3.4), we can also regard T ⊗ C as the category of
C-modules (X, i) in T. Then (X, i) = (X, i ◦ ι) and µX is the identity map. The
functor X �→ X ⊗ C sends X to X ⊕X with a+ bi ∈ C acting as

(
a −b
b a

)
.

Polarizations.

Let (T, w, T ) be a Tate triple over a subfield k of R. A bilinear form on an object
X of weight n of T is a morphism

ϕ : X ⊗X −→ T⊗(−n).

It is said to be nondegenerate if the map X → X∨(−n) it defines is an isomorphism.
The parity of a nondegenerate ϕ is the unique morphism ε : X → X such that2

ϕ(x, x′) = ϕ(x′, εx).

2Here, and elsewhere, we identify an object X with its functor of “points” Z �→ Hom(Z, X).

The parity can also be described as the automorphism of X that measures the difference between

the two isomorphisms X → X∨(−n), x �→ ϕ(x ⊗ ·), x �→ ϕ(· ⊗ x).
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Let u ∈ End(X); the transpose ut of u with respect to a nondegenerate ϕ is defined
by

ϕ(ux, x′) = ϕ(x, utx′).

Then (uv)t = vtut, at = a for a ∈ k, εt = ε−1, and if ε is in the centre of End(X),
then utt = u.

The evaluation map (see the proof of 1.1) allows us to define a trace map

Tr: End(X) = Hom(1,X ⊗X∨)
Hom(1,ev)−−−−−−→ Hom(1, 1) = k.

A nondegenerate bilinear form ϕ is said to be a Weil form if its parity ε is central
and if for all nonzero u ∈ End(X), Tr(u ·ut) > 0. Two Weil forms ϕ and ψ are said
to be compatible if ϕ⊕ ψ is also a Weil form.

Suppose there is given for each homogeneous X in T an equivalence class (for
the relation of compatibility) Π(X) of Weil forms of parity wX(−1) = (−1)wt(X)
on X; we say that Π is a (graded) polarization on (T, w, T ) if

(1.6.1) for all homogeneous X and Y of the same weight,

ϕ ∈ Π(X), ψ ∈ Π(Y ) =⇒ ϕ⊕ ψ ∈ Π(X ⊕ Y );

(1.6.2) for all homogeneous X and Y ,

ϕ ∈ Π(X), ψ ∈ Π(Y ) =⇒ ϕ⊗ ψ ∈ Π(X ⊗ Y );

(1.6.3) the identity map T ⊗ T → T⊗2 lies in Π(T ).
The axioms have the consequence that

ϕ ∈ Π(X), X ′ ⊂ X =⇒ ϕ|X ′ ∈ Π(X ′);

in particular, ϕ|X ′ is nondegenerate. A polarizable Tannakian category is semisim-
ple. (See Saavedra 1972, V.2.4.1.1.)

Let Π0 be a polarization on (T, w, T ), and let z be an element of Aut⊗(idT) of
order 2 that acts as the identity on T . If ϕ ∈ Π0(X), then zϕ =df ((x, y) �→ ϕ(x, zy))
is also a Weil form, and z ·Π0 = {zϕ | ϕ ∈ Π0} is a polarization on (T, w, T ). Every
polarization on (T, w, T ) is of the form z · Π0 for a unique z (Deligne and Milne
1982, 5.15).

Example 1.7. Let V∞ be the category of pairs (V, F ) with V a Z-graded vector
space over C and F a semi-linear automorphism of V such that F 2 acts as (−1)m
on the mth graded piece of V . Then V∞ has a natural tensor structure relative to
which it is a nonneutral Tannakian category over R. The pair T = (C, z �→ z̄), with
C regarded as a homogeneous vector space of weight -2, is a Tate object for V∞.
For (V, F ) homogeneous of degree m, define a (−1)m-symmetric form on V to be a
nondegenerate bilinear form ϕ : V ⊗ V → T⊗−m with parity (−1)m, i.e., such that
ϕ(x, y) = (−1)mϕ(y, x), and call such a form positive-definite if ϕ(x, Fx) > 0, all
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x 
= 0. For any (V, F ) homogeneous of weight m, let Πcan(V, F ) be the set of all
(−1)m-symmetric positive-definite forms on V . Then Πcan is a polarization on V∞.
There is exactly one other polarization, namely, w(−1) ·Πcan.
Example 1.8. A polarization of a rational Hodge structure (V, h) of weight m is a
morphism ϕ : V ⊗ V → Q(−m) of rational Hodge structures such that (x, y) �→
(2πi)mϕ(x, h(i)y) is a symmetric positive-definite form on V ⊗ R. The category
HdgQ of polarizable rational Hodge structures together with the weight gradation
and the Tate object Q(1) is a Tate triple over Q, and there is a polarization onHdgQ

such that Π(V, h) comprises the polarizations of (V, h) in the sense just defined.

Conjecture 1.9. The Tate triple (Mot(Fq), w, T ) has a polarization.

In fact, Grothendieck’s standard conjectures imply thatMot(Fq) has a canonical
polarization—see (Saavedra 1972, VI.4.4). Later (2.44) we shall see that the Tate
conjecture implies that Mot(F) has a polarization which is unique up to multipli-
cation by w(-1).

Proposition 1.10. Let Π be a polarization on Mot(Fq) ⊗ R. There exists an
exact faithful tensor functor ω∞ : Mot(Fq) ⊗ R → V∞ of Tate triples carrying Π
into Πcan; moreover, ω∞ is unique up to multiplication by w(-1).

Proof. Apply (Deligne and Milne 1982, 5.20). �

The �-adic fibre functors.

Let V be a smooth projective variety over a field k, and let � be a prime number
not equal to the characteristic of k. For every r, there is a cycle map

clr : Zr(V ) −→ H2r(V ⊗ kal,Q�(r)) (étale cohomology).

Unfortunately, we don’t know that this map factors through Ar(V ), i.e., that if an
algebraic cycle is numerically equivalent to zero then its cohomology class is zero.
This is equivalent to the following existence statement for algebraic cycles: if there
exists a cohomology class c such that cl(Z) · c 
= 0, then there exists an algebraic
cycle Z ′ such that Z · Z ′ 
= 0.

Proposition 1.11. Assume that for any smooth projective variety V over Fq the
cycle maps Zr(V )→ H2r(V ⊗ F,Q�(r)) factor through Ar(V ). Then the functor

V �→ H�(V ) =df ⊕rHr(V ⊗ F,Q�)

extends uniquely to a fibre functor ω� on Mot(Fq) over Q�.

Proof. Standard properties of étale cohomology (see for example Milne 1980,
VI.11.6) show that H� is a functor on CV0(Fq), and it is then obvious that it
extends to Mot(Fq). The Künneth formula implies that it is a tensor functor
on Mot(Fq). It is exact because it is additive. (For more details, see Demazure
1969/70, §8.) �

Remark 1.12. If the hypothesis of (1.11) holds for all � 
= p, then there is a fibre
functor ωp over A

p
f such that ωp ⊗A

p
f

Q� = ω� for all �.
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The p-adic fibre functor.

Let k be a perfect field of characteristic p 
= 0. For any smooth projective variety
V over k, we set

Hr
crys(V ) = Hr(V/W (k))⊗W(k) K(k)

where Hr(V/W (k)) is the rth crystalline cohomology group of V with respect to
W (k) (Berthelot 1974). Then Hr

crys(V ) is a finite-dimensional vector space over
K(k).

Proposition 1.13. Assume that for any smooth projective variety V over Fq the
cycle map Zr(V )→ H2r

crys(V ) factors through Ar(V ). Then the functor

V �→ Hcrys(V ) =df ⊕Hr
crys(V )

extends uniquely to a fibre functor ωp on Mot(Fq) over K(k).

Proof. Standard properties of crystalline cohomology (Berthelot 1974; Milne 1986,
2.11; Gillet and Messing 1987) show that Hcrys is a functor on CV0(Fq), and the
same argument as in the proof of (1.11) shows that this functor then extends to a
fibre functor on Mot(Fq). �

The Tate conjecture and consequences.

We write ζ(V, s) for the zeta function of a variety V over Fq .

Conjecture 1.14 (Tate conjecture). For all smooth projective varieties V
over Fq and r ≥ 0, the dimension of Ar(V ) is equal to the order of the pole of
ζ(V, s) at s = r.

Proposition 1.15. Assume the Tate conjecture (1.14). For any smooth projective
variety V over Fq and any � 
= p,∞, the cycle map Zr(V ) → H2r(V ⊗ F,Q�(r))
defines an isomorphism

Ar(V )⊗Q� −→ H2r(V ⊗ F,Q�(r))Gal(F/Fq), all r.

Moreover, πV acts semisimply on H�(V ).

Proof. See (Tate 1992, 2.9; Milne 1986, 8.6). �

In particular, the Tate conjecture implies that an algebraic cycle on V is nu-
merically equivalent to zero if and only if its class in H�(V ) is zero, and so we can
apply (1.11). Let V�(Fq) be the category of semisimple continuous representations
of Gal(F/Fq) on finite-dimensional Q�-vector spaces. It is a Tannakian category
over Q�.

Corollary 1.16. Assume (1.14). For any � 
= p,∞, the functor ω� defines a fully
faithful tensor functor

Mot(Fq)⊗Q� −→ V�(Fq).
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Proof. Proposition 1.15 says that H� is a fully faithful functor CV0(Fq) ⊗ Q� →
V�(Fq), and it follows that its extension to Mot(Fq)⊗Q� is also fully faithful. �

Let k be a perfect field of characteristic p 
= 0. An F -isocrystal over k is a
finite-dimensional vector space M over K(k) together with a σ-linear isomorphism
F : M → M . We shall drop the “F” and simply call them isocrystals over k. The
isocrystals over k form a Tannakian category over Qp, which we denote by Vp(k).

Proposition 1.17. Assume (1.14). The functor ωp defines a fully faithful tensor
functor

Mot(Fq)⊗Qp −→ Vp(Fq).

Proof. There is analogous statement to (1.15) for the crystalline cohomology, which
can be applied as in the proof of (1.16) to obtain the proposition. �

The category of motives over F.

Everything in this section holds mutatis mutandis with Fq replaced by F.
Let ρ1 and ρ2 be continuous semisimple representations of open subgroups U1

and U2 of Gal(F/Fp) on the same finite-dimensional Q�-vector space V . We say
that ρ1 and ρ2 are related if they agree on an open subgroup of U1 ∩ U2. This is
an equivalence relation, and we call an equivalence class of representations a germ
of an �-adic representation of Gal(F/Fp). With the obvious structure, the germs of
�-adic representations of Gal(F/Fp) form a Tannakian category V�(F) over Q�.

Theorem 1.18. The categoryMot(F) of motives over F is a semisimple Tannakian
category over Q. Assume the Tate conjecture (1.14).

(a) The functor V �→ ⊕rHr(V,Q�) (étale cohomology) extends to a fully faithful
tensor functor

ω� : Mot(F) ⊗Q� −→ V�(F).

(b) The functor V �→ ⊕rHr(V/W (F))⊗K(F) (crystalline cohomology) extends
to a fully faithful tensor functor

ωp : Mot(F) ⊗Qp −→ Vp(F).

Proof. Straightforward extension of previous results. �

Notes. This section reviews standard material, most of which can be found already
in (Saavedra 1972).

§2. Basic Properties of the Category of Motives over a Finite Field

Throughout this section, we assume the Tate conjecture (1.14). Then Mot(Fq)
andMot(F) are semisimple Tannakian categories over Q with the fibre functors ω�,
� = 2, 3, 5, . . . ,∞, described in §1.
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Characteristic polynomials.

For a motive X and an integer r, consider the alternating map

a =
∑

sgn(σ) · σ : X⊗r → X⊗r

(sum over the elements of the symmetric group on r letters). Then a/r! is a projector
in End(X⊗r), and we define ΛrX to be its image. For any fibre functor ω, ω(ΛrX) =
Λrω(X), and so

rank(ΛrX) =
(
rank X

r

)
.

In particular, rank(ΛrX) = 1 if r = rank(X). For an endomorphism α of X, we
define det(α) to be ΛrankXα (regarded as an element of Q).

Proposition 2.1. For any endomorphism α of a motive X, there is a unique
polynomial Pα(t) ∈ Q[t] such that

Pα(n) = det(n− α), all n ∈ Q.

Moreover, Pα(t) is monic of degree equal to the rank of X, and it is equal to the
characteristic polynomial of α acting on ω(X) for any fibre functor ω.

Proof. If P (t) and Q(t) both have the property, then their difference has infinitely
many roots, and hence is zero. Thus there is at most one such polynomial Pα(t).

Let ω be a fibre functor over a field K. The characteristic polynomial P (t) of
ω(α) acting on ω(X) is a monic polynomial of degree r = rankX with coefficients
in K such that P (n) = det(n − α) for all n ∈ K. Write P (t) =

∑
cit

i, ci ∈ K.
Choose r distinct elements nj of Q, and note that (ci)1≤i≤r is the unique solution
of the system of linear equations

c0 + c1nj + c2n
2
j + . . .+ cr−1nr−1j + nrj = det(nj − α), j = 1, 2, . . . , r,

with coefficients in Q. Therefore each ci ∈ Q.
Alternatively, and more directly, we can simply set

cr−i = (−1)i Tr(α|ΛiX) = (−1)i Tr(a
i!
◦ ⊗iα). �

We call Pα(t) the characteristic polynomial of α, and sometimes write it Pα(X, t).

The Frobenius endomorphism.

Recall that for any variety V over Fq, πV denotes the Frobenius endomorphism of
V relative to Fq. These morphisms commute with all morphisms of varieties over
Fq, and, more generally, with algebraic correspondences of degree zero (see Kleiman
1972, p80). It follows that, for each motive X, there is a πX ∈ End(X) such that

(a) if X = h(V ), then πX = h(πV );
(b) πX⊗Y = πX ⊗ πY ; π1 = id1; πY ◦ α = α ◦ πX for all morphisms α : X → Y .
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Condition (b) says that the πX ’s form an endomorphism of the identity functor of
Mot(Fq) regarded as a tensor functor, i.e., (πX ) ∈ End⊗(id), which implies that
each πX is an automorphism (Deligne and Milne 1982, 1.13). Note that π acts
on H2(P1 ,Q�) as multiplication by q, and therefore it acts on the Tate motive as
multiplication by q−1.

Proposition 2.2. For a motive X over Fq , Q[πX ] ⊂ End(X) is a product of fields,
and if X is homogeneous of weight m, then for every homomorphism ρ : Q[πX ]→ C,
|ρπX | = qm/2.

Proof. Because πX acts semisimply on ω�(X) (see 1.15, 1.16), Q[πX ] ⊗ Q� is a
product of fields, and this implies that the same is true of Q[πX ]. If X = hm(V )
for V a smooth projective variety over Fq , the second assertion is part of the Weil
conjectures (Deligne 1974), and the general case follows easily from this special
case. �

Remark 2.3. If X is effective, then (by definition)

X ⊕ Y = h(V )

for some motive Y and smooth projective variety V . The eigenvalues of πV are
algebraic integers, and therefore the same is true of πX . If X is an arbitrary motive
over Fq, then X(n) is effective for some n, and so qnπX is an algebraic integer for
some n.

Classification of the isomorphism classes of simple motives.

By a central division (respectively simple) algebra over a fieldK, we mean a division
(respectively simple) algebra having centre K and of finite dimension over K.

Proposition 2.4. Let X be a simple motive over Fq . Then Q[πX ] is a field, and
End(X) is a central division algebra over Q[πX ].

Proof. Because X is simple, any nonzero endomorphism α of X is an isomorphism,
which shows that End(X) is a division algebra and that Q[πX ] is a subfield. The
Tate conjecture (1.14) implies that End(X)⊗Q� is the centralizing ring of Q[πX ]⊗Q�

in End(ω�(X)), and because Q[πX ]⊗Q� is semisimple the double centralizer theorem
(Bourbaki, 1958, 5.4, Corollary 2, p50) then implies that Q[πX ]⊗ Q� is the centre
of End(X)⊗Q�. It follows that Q[πX ] is the centre of End(X). �

Definition 2.5. An algebraic number π is said to be a Weil q-number of weight
m if

(a) for every embedding ρ : Q[π] ↪→ C, |ρ(π)| = qm/2;
(b) for some n, qnπ is an algebraic integer.

The set of Weil q-numbers in Qal is denoted by W (q). It is a subgroup of Qal×

stable under the action of Γ =df Gal(Qal/Q). We can associate with an arbitrary
Weil q-number π the orbit [π] ∈ Γ\W (q) consisting of the set of conjugates of π in
Qal, i.e., of the set of images of π under the embeddings Q[π] ↪→ Qal.
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Condition (2.5a) implies that π �→ π′ = qm/π defines an involution α �→ α′ of
Q[π] such that ρ(α′) = ιρ(α) for all embeddings ρ : Q[π] ↪→ C. Hence, if π is a Weil
q-number, then Q[π] is either a CM-field or a totally real field according as π 
= π′

or π = π′.
From (2.2, 2.3, 2.4) we know that, for a simple motive X of weightm over Fq , πX

is a Weil q-number of weight m. Recall that Σ(Mot(Fq)) is the set of isomorphism
classes of simple objects in Mot(Fq).

Proposition 2.6. The map X �→ [πX ] defines a bijection

Σ(Mot(Fq)) −→ Γ\W (q).

Proof. Let X and X ′ be simple motives over Fq whose Weil numbers π and π′ are
conjugate. Then Hom(ω�(X), ω�(X ′))Γ 
= 0, and so the Tate conjecture implies
Hom(X,X ′) 
= 0. Hence X and X ′ are isomorphic.

Let π be a Weil q-number in Qal; we have to prove that [π] arises from a motive.
For some n ≥ 0, qnπ will be an algebraic integer. If X is a simple motive with
[πX ] = [qnπ], then X(n) will be a simple motive with [πX(n)] = [π]. Therefore we
can assume that π is an algebraic integer. Let m be its weight. If m = 0, then π
is a root of unity and it arises from an Artin motive. Otherwise Honda’s theorem
(Tate 1968/69, Thm 1) shows that there is a simple abelian variety A over Fqm

such that [πA] = [π]. Consider the abelian variety A∗ over Fq obtained from A by
restriction of scalars. Then P (h1(A∗), t) = P (h1(A), tm), and so π occurs as a root
of P (h1(A∗)⊗m, t). For some simple factor X of h1(A∗)⊗m, π will be conjugate to
πX . �

Remark 2.7. The proof shows that, under the assumption of the Tate conjecture,
the Tannakian category Mot(Fq) is generated (as a Tannakian category) by the
motives of abelian varieties and Artin motives.

Isotypic motives.

An object in an abelian category is isotypic if it is isomorphic to a direct sum of
copies of a single simple object. Proposition 2.4 shows that the endomorphism ring
of an isotypic motive X over Fq is a matrix algebra over a central division algebra
over the field Q[πX ], i.e., it is a central simple algebra over Q[πX ].

Let E be a central simple algebra of degree e2 over a field F of finite degree
f over Q, and let K be an extension of Q that splits E, i.e., such that E ⊗Q K
is a product of matrix algebras over K. Write Hom(F,K) = {σ1, . . . , σf}. Then
E⊗QK = E1×· · ·×Ef where Ei =df E⊗E,σiK is a matrix algebra of degree e2 over
K. Up to isomorphism, there are exactly f nonisomorphic simple representations
V1, . . . , Vf of E over K, each of dimension e over K, and their sum V = ⊕Vi is
called the reduced representation of E.

Proposition 2.8. Let X be an isotypic motive over Fq, and let E = End(X).

(a) The rank of X is [E : Q[πX ]]1/2 · [Q[πX ] : Q].
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(b) For any fibre functor ω over a field K that splits E, the representation of E
on ω(X) is isomorphic to the reduced representation.

(c) For α ∈ E,

Pα(X, t) = NmQ[πX ]/Q(cα(t)),

where cα(t) is the reduced characteristic polynomial of α in E/Q[πX ]. In
particular, Pπ(X, t) = mπ(t)e where mπ(t) is the minimum polynomial of π
in the extension Q[π]/Q and e = [E : Q[π]]1/2.

Proof. (a) The number [E : Q[π]]1/2 · [Q[π] : Q] is the degree over Q of a maximal
commutative étale subalgebra of E. It is therefore also the degree over Q� of a
maximal commutative étale subalgebra of E ⊗ Q�, � 
= p,∞. But E ⊗ Q� is the
centralizer in End(ω�(X)) of the semisimple endomorphismω�(π), and so this degree
is the dimension of ω�(X) as a Q�-vector space, which equals the rank of X.

(b) Suppose the representation of E on ω(X) is isomorphic to ⊕miVi, mi ≥ 0.
For any α ∈ Q[π], the characteristic polynomial of α on Vi is (t − σiα)e, and so
Pα(t) =

∏
1≤i≤f (t − σiα)emi , where f = [Q[π] : Q]. Because Pα(t) has coefficients

in Q, the mi’s must be equal, and because Pα(t) has degree ef , each mi = 1.
(Alternatively, let L be a maximal commutative étale subalgebra of E. For any
fibre functor ω over a field K, L⊗Q K acts faithfully on ω(X), and [L⊗Q K : K] =
dimK ω(X), and so ω(X) is a free L⊗QK-module of rank 1. When K splits E, this
implies that ω(X) is isomorphic to the reduced representation.)

(c) Choose a fibre functor as in (b) and note that the two polynomials become
equal in K[t]. On taking α = πX , we find that

PπX (X, t) = NmQ[πX ]/Q(t− π)e = (mπX (t))e. �

The isocrystal of a motive.

We first recall the Dieudonné-Manin classification of isocrystals (i.e., F -isocrystals)
over an algebraically closed field k. For each pair of relatively prime integers (r, s)
with r ≥ 1,

Nr,s = Qp[T ]/(T r − ps), FN = multiplication by T,

is an isocrystal over Fp, and we define

Mr,s = K(k)⊗Qp Nr,s, FM = σ ⊗ FN .

It is an isocrystal over k of rank r. (In general, the rank of an isocrystal (M,F )
as an element of the Tannakian category Vp(k) is the dimension of M as a vector
space over K(k).)

Theorem 2.9. Let k be an algebraically closed field of characteristic p 
= 0. The
category Vp(k) is semisimple. For each pair of relatively prime integers (r, s) with



MOTIVES OVER FINITE FIELDS 17

r ≥ 1, the isocrystal Mr,s is simple, and every simple isocrystal over k is isomorphic
to Mr,s for exactly one pair (r, s).

Proof. See (Demazure 1972, IV). �

Write Ms/r for Mr,s. Every isocrystal M over k can be written uniquely as a
direct sum

M = (Mλ1)
r1 ⊕ · · · ⊕ (Mλn)

rn , λ1 < λ2 < . . . < λn, ri ≥ 1.

The numbers λi are called the slopes of M , and ri is the multiplicity of λi.
For an isocrystal M over Fpn , we let πM = Fn. It is a K(Fpn )-linear endomor-

phism of M . When k is not algebraically closed, the category Vp(k) need not be
semisimple.

Proposition 2.10. The following conditions on an isocrystal (M,F ) over Fq are
equivalent:

(a) (M,F ) is semisimple, i.e., it is a direct sum of simple isocrystals over Fq;
(b) End(M,F ) is semisimple;
(c) πM is a semisimple endomorphism of M (regarded as a vector space over

K(Fq)).
When these conditions hold, the centre of End(M,F ) is Qp[πM ].

Proof. (a) =⇒ (b): If M is simple, then End(M,F ) is a division algebra; if M
is isotypic, then End(M,F ) is a matrix algebra over a division algebra; if M is
semisimple, then End(M,F ) is a product of matrix algebras over division algebras.

(b) =⇒ (c): Because Qp[πM ] is contained in the centre of End(M,F ), it is a
product of fields.

(c) =⇒ (b,a): Condition (c) implies that the centralizing ring C of K(Fq)[πM ] in
the ring of endomorphisms of M (regarded as a K(Fq)-vector space) is a semisimple
K(Fq)-algebra. The map

End(M,F )⊗Qp K(Fq) ↪→ C

is injective, and on counting dimensions, we see that it is an isomorphism. Therefore
End(M,F ) must also be semisimple.

The category of all isocrystals over Fq satisfying (c) is therefore a Qp-linear
abelian category such that the endomorphism ring of every object is a semisimple
ring of finite-dimension over Qp. It is well-known that this implies that all the
objects of the category are semisimple (see Jannsen 1992, Lemma 2).

Finally, because πM is a semisimple endomorphism of M , the centre of the ring
C defined above is K(Fq)[πM ]. But C = End(M,F )⊗Qp K(Fq), and it follows that
the centre of End(M,F ) is Qp[πM ]. �

Remark 2.11. The map M �→ [πM ] defines a bijection from the set of isomorphism
classes of simple isocrystals over Fq to the set of orbits of Gal(Qal

p /Qp) acting on
Qal×
p (Kottwitz 1992, 11.2, 11.4).
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Let (M,F ) be an isocrystal over a perfect field k. For any perfect field k′ ⊃
k, (Mk′ , Fk′) =df (K(k′) ⊗M,σ ⊗ F ) is an isocrystal over k′. The slopes (and
multiplicities) of M are defined to be the slopes (and multiplicities) of Mkal .

Let ordp denote the p-adic valuation Q×
p � Z on Qp or its extension to any field

algebraic over Qp.

Proposition 2.12. Let M be an isocrystal over Fq of rank d, and let {a1, . . . , ad}
be the family of eigenvalues of πM . Then the family of slopes of M is
{ordp(a1)/ ordp(q), . . . , ordp(ad)/ ordp(q)}.
Proof. See (Demazure 1972, p90). �

Theorem 2.13. Let X be a motive over Fq. Then ωp(X) is a semisimple
isocrystal over Fq of rank equal to rankX. The characteristic polynomial of
πX on X is equal to the characteristic polynomial of πωp(X) on ωp(X). If
{a1, . . . , ad} is the family of roots of PπX (X, t), then the family of slopes of ω(X)
is {ordp(a1)/ ordp(q), . . . , ordp(ad)/ ordp(q)}.
Proof. The Tate conjecture implies that End(ωp(X), F ) = End(X)⊗Qp (see 1.17),
and so it, and ωp(X), are semisimple. It is clear from the definition of the action of
F on the crystalline cohomology of a variety (Berthelot 1974) that the Frobenius
endomorphism πX of a motive X induces the Frobenius endomorphism πωp(X) of
ωp(X), i.e. that

πωp(X) = ωp(πX),

and so they have the same characteristic polynomial. The final statement follows
from (2.12). �

The endomorphism algebra of a simple motive.

Let K be a nonarchimedean local field, and consider a central division algebra
D over K. Choose a maximal subfield L of D that is unramified over K. The
Skolem-Noether theorem (Bourbaki 1958, §10) shows that every automorphism of
L is induced by an inner automorphism of D. In particular, there is a γ ∈ D such
that γxγ−1 = Frob(x) for all x ∈ L, where Frob is the geometric Frobenius element
in Gal(L/K) (it acts as x �→ xq

−1
on the residue field). The valuation ord: L× � Z

extends uniquely to a valuation ord: D× → Q, and the invariant of D is defined by
the rule:

invK(D) = ord(γ) ∈ Q/Z.

The Wedderburn theorems imply that a central simple algebra E over K is isomor-
phic to a matrix algebra over a division algebra D over K, uniquely determined up
to isomorphism, and the invariant of E is defined to be that of D.

In the proof of the next proposition, we shall need to use the following fact. Let
K ′ be a field

K ⊂ K ′ ⊂ D

and let D′ be the centralizing ring of K ′ in D. The double centralizer theorem
shows that D′ is a central division algebra over K ′. When K ′ is unramified over K,
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then we can choose the field L in the definition of invK(D) to contain it, and then
it is clear that

invK′ D′ = [K ′ : K] · invK D.

This formula holds even when K ′ is ramified over K.

Proposition 2.14. Let (M,F ) be a simple isocrystal over Fq. Then E =df

End(M,F ) is a central division algebra over Qp[πM ] with invariant

−ordp(πM )
ordp(q)

· [Qp[πM ] : Qp];

moreover
rankM = [E : Qp[πM ]]1/2 · [Qp[πM ] : Qp].

Proof. Because M is simple, Qp[πM ] is a field, and so the term “ordp(πM )” is
well-defined, and is equal to ordp(π) for any conjugate π of πM .

Let λ = ordp(πM )/ ordp(q). Then MF is isomorphic to a direct sum of copies of
Mλ, and so End(MF, F ) is a matrix algebra over a End(Mλ, F ). But (see Demazure
1972, p80), End(Mλ, F ) is a central division algebra over Qp with invariant3 −λ.

When we extend the action of πM on M to MF = K(F)⊗M by linearity, so that
Fn

F = πM ◦ σn where n = ordp q, then End(M,F ) becomes the centralizing ring of
Qp[πM ] in End(MF, FF). Hence,

invQp[πM ] End(M,F ) = [Qp[πM ] : Qp] · invQp End(MF, FF) = [Qp[πM ] : Qp] · (−λ),

which proves the first statement.
Recall from the proof of (2.10) that

E ⊗Qp K(Fq) ≈ C

where C is the centralizing ring of K(Fq)[πM ] in End(M). The second statement
in the proposition can be proved by noting that the right hand side is equal to
the degree over Qp of a maximal commutative étale subalgebra of E, and that
this and the left hand side are both equal to the degree over K(Fq) of a maximal
commutative étale subalgebra of C . �

For a central division algebra D over an archimedean local field K, invK(D) is
defined to be 0 or 1

2 (mod 1) according as D is split or nonsplit. For a central
division algebra over a number field K and a prime v of K, we set

invv(D) = invKv (D ⊗K Kv).

3We are using a different sign convention for the invariant from Demazure.
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Theorem 2.15. Let K be an algebraic number field.

(a) Two central division algebras D and D′ over K are isomorphic if and only
if invv(D) = invv(D′) for all primes v of K.

(b) An element (iv) ∈ ⊕vQ/Z (sum over all primes of K) is the family of
invariants of a central division algebra over K if and only if

∑
v iv = 0,

2iv = 0 if v is real, and iv = 0 if v is complex.
(c) For a central division algebra over a number field K, [D : K]1/2 is the least

common denominator of the numbers invv(D).

Proof. This is a restatement of fundamental results in class field theory. For a
discussion of the results, with references, see (Reiner 1975, Chapter 8) or (Pierce
1982, Chapter 18). �

Since End(X) is a central division algebra over the field Q[πX ] when X is simple,
to describe its isomorphism class, we only have to give its invariants at the primes
of Q[πX ].

Theorem 2.16. Let X be a simple motive over Fq, and let E = End(X). For any
prime v of Q[πX ], ‖πX‖v = qinvv(E). Explicitly, this says that

invv(E) =


1/2 if v is real and X has odd weight;

− ordv(πX )
ordv(q)

· [Q[πX ]v : Qp] if v|p;
0 otherwise.

Proof. If v|� with � 
= p,∞, then ω�(X) is a free module over Q� ⊗ Q[πX ] of rank
e = [E : Q[πX ]]1/2 (see the proof of 2.8), and so E⊗Q� is the ring of e× e matrices
over Q[πX ]⊗Q�. Hence in this case the invv(E) = 0.

If v|p, then the statement follows from (2.13) and (2.14).
If v is real, then it corresponds to an embedding Q[πX ] ↪→ R, and we can regard

πX as real number such that π2X = qm. If m is even, then X = Q(−m2 ) or becomes
isomorphic to it over Fq2 (depending on whether πX = q

m
2 or −qm

2 ). In either
case, X has rank 1, and so invv(E) = 0. Hence we can assume that m is odd. If q
is a square in Q, then Q[πX ] = Q, and invv(E) = 1/2 because invp(E) = 1/2 and
the sum of the invariants is 0 (mod 1). Suppose q is not a square in Q, and let X ′

be the base change of X to Fq2 . Then πX ′ = π2X = qm, and so, according to the
case just considered, End(X ′) is a central simple algebra over Q with invariant 1/2
at ∞. Because End(X) is the centralizer in End(X ′) of Q[πX ], we see that it has
invariant 1/2 at each of the two infinite primes of Q[

√
q]. �

The tensor structure on Mot(Fq).
Because Mot(Fq) is semisimple, the Grothendieck group K(Mot(Fq)) of Mot(Fq)
is the free abelian group on the set of isomorphism classes of simple objects
in Mot(Fq). The tensor structure on Mot(Fq) defines a multiplication on
K(Mot(Fq)), which we now determine.
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Let W be a set with an action of a group Γ, and let Z[Γ\W ] be the free abelian
group generated by Γ\W . Assume that every orbit is finite, and thatW has a group
structure compatible with the action of Γ, i.e., such that

g(ww′) = (gw)(gw′), g ∈ Γ, w,w′ ∈W.

Then we can define a multiplication on Z[Γ\W ] as follows: for orbits o =
{w1, . . . , wm} and o′ = {w′

1, . . . , w
′
n}, write {wiw

′
j | 1 ≤ i ≤ m, 1 ≤ j ≤ n}

as a disjoint union of orbits with multiplicities,
∐

rioi, and define

o · o′ = ∑
rioi.

With this structure Z[Γ\W ] becomes a commutative ring (with 1 if the identity
element of W is fixed by Γ). For example, to see that the associative law holds,
note that if o = {w1, . . . }, o′ = {w′

1, . . . }, and o′′ = {w′′
1 , . . . }, then both o(o′o′′)

and (oo′)o′′ are obtained by decomposing the family {wiw
′
jw

′′
k} into a disjoint union

of orbits with multiplicities.
For π ∈ W (q), let d(π) be the least common denominator of the numbers iv(π)

where ‖π‖v = qiv(π), v a prime of Q[π]. Note that d(π′) = d(π) if π′ is conjugate
to π.

Define
γ : K(Mot(Fq))→ Z[Γ\W (q)]

to be the Z-linear map that sends the isomorphism class of a simple object X to
d(πX ) · [πX ].

Proposition 2.17. The map γ is an injective homomorphism of rings with image
the set of elements

∑
n[π] · [π] such that d(π)|n[π] for all [π].

Proof. For any object X of a semisimple Tannakian category over a field k, End(X)
is a finitely generated semisimple k-algebra, and

X is isotypic ⇐⇒ End(X) is simple ⇐⇒ the centre of EndX is a field.

Let C be the centre of End(X). Then C is a product of fields, and X decomposes
into a product of isotypic components according as C decomposes into a product
of fields: if

C = C1 × · · · × Cr, 1 = (e1, . . . , er),

then
X = X1 ⊕ · · · ⊕Xr, Xi = Im(ei),

with the Xi the isotypic components of X.
Choose a fibre functor ω for Mot(Fq) over some large field K containing Qal.

For a motive X over Fq, the centre of End(X) is Q[πX ], and the factors of Q[πX ]
can be identified with the orbits of Γ acting on Hom(Q[πX ],Qal). But this last
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set can be identified with the set of eigenvalues of πX acting on ω(X), and so the
isotypic components of X are in natural one-to-one correspondence with the orbits
of Γ acting on this set of eigenvalues. Moreover (2.8b) shows that, if m[π] is the
multiplicity with which an orbit [π] occurs in the family of eigenvalues, then γ(X) =∑

m[π] · [π]. With this description of γ, it is clear that γ takes products to products,
because the family of eigenvalues of πX⊗X ′ acting on ω(X ⊗X ′) = ω(X) ⊗ ω(X ′)
is the family of products ππ′ with π and eigenvalue of πX and π′ an eigenvalue of
πX ′ .

The remaining statements are obvious. �

Motives over F.
Let R be a ring, and consider the set of pairs (a, n) where a ∈ R and n ≥ 1. We
say that two pairs (a, n) and (a′, n′) are equivalent if an

′N = a′nN for some N ≥ 1.
An equivalence class of such pairs will be called a germ of an element of R.

Suppose R is a Q-algebra of finite dimension, and let α be a germ of an element
of R represented by (a, n). For N >> 1, the algebra Q[aN ] is independent of the
choice of (a, n) and N . We denote it by Q[α].

Let X be a motive over F. For any model Xn of X over a field Fpn we obtain a
Frobenius element πXn ∈ End(Xn) ⊂ End(X). The germ of an element of End(X)
represented by (πXn , n) is independent of the choice of Xn and will be called the
Frobenius endomorphism πX of X.

When n|n′, there is a homomorphism

π �→ πn
′/n : W (pn)→ W (pn

′
),

and we define W (p∞) = lim−→W (pn). Thus an element of W (p∞) is represented by
a pair (π, n) with π ∈ W (pn), and (π, n) and (π′, n′) represent the same element
of W (p∞) if and only if πn

′N = π′nN for some N ≥ 1. The Galois group Γ =
Gal(Qal/Q) acts on W (p∞), and we write [π] for the orbit of an element π.

To a simple motive X over F, we can attach an orbit [πX ] ∈ Γ\W (p∞) as follows:
for any representative (π, n) of πX , [πX ] is the image of [π] ∈ Γ\W (pn) in Γ\W (p∞).

Theorem 2.18. The map X �→ [πX ] defines a bijection

Σ(Mot(F)) → Γ\W (p∞).

Proof. This follows easily from (2.6). �

Theorem 2.19. Let X be a simple motive over F.

(a) The endomorphism ring End(X) of X is a central division algebra over
Q[πX ].

(b) If πX is represented by (π, n), then the invariant of End(X) at a prime v of
Q[πX ] is determined by the rule:

‖π‖v = (pn)invv(End(X)).

(c) The rank of X is [End(X) : Q[πX ]]1/2 · [Q[πX ] : Q].
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Proof. The motive X, together with all its endomorphisms, will be defined over
some field Fq, and so this theorem follows from (2.4), (2.8), and (2.16). �

Suppose πX is represented by (π, n). Define d(π) to be the least common de-
nominator of the numbers iv(π), where ‖πn‖v = (pn)iv(π).

Corollary 2.20. The map

[X] �→ d(πX ) · [πX ] : Σ(Mot(F)) −→ Z[Γ\W (p∞)]

extends by linearity to a homomorphism of rings

K(Mot(F)) −→ Z[Γ\W (p∞)].

Proof. The proof is the same as that of (2.17). �

The category Mot(Fq)⊗Qal.

Let L be a subfield of Qal. As noted in (1.4), we can obtain Mot(Fq) ⊗ L by
replacing Zr(V ) with Zr(V )⊗L in the definition of Mot(Fq). Just as before, there
is a bijection

Σ(Mot(Fq)⊗ L) −→ ΓL\W (q), ΓL = Gal(Qal/L).

Moreover, if X is a simple object of Mot(Fq) ⊗ L, then E = End(X) is a central
division algebra over L[πX ] with rank [E : L[πX ]]1/2 · [L[πX ] : L] whose invariant
at a prime v of L[πX ] is determined by the formula ‖πX‖v = qinvv(E). There is a
canonical homomorphism of rings

K(Mot(Fq)⊗ L) −→ Z[ΓL\W (q)].

On applying these remarks in the case L = Qal, we obtain the following result.

Proposition 2.21. The simple objects of Mot(Fq)⊗Qal are all of rank 1, and the
map X �→ πX is a bijection

Σ(Mot(Fq)) −→ W (q)

with the property that πX⊗X ′ = πX · πX ′ .

Recall (Gabriel and Demazure 1970, p472) that with any abelian group Σ, there
is associated an affine group scheme D(Σ) over k such that, for any k-algebra R,

D(Σ)(R) = Hom(Σ, R×).

In fact D(Σ) = SpecA with A = k[Σ], and the group structure on D(Σ) is defined
by the following co-algebra structure on A:

∆(σ) = σ ⊗ σ, εσ = 1, inv(σ) = σ−1, σ ∈ Σ.

Note that Σ can be recovered from D(Σ) because Σ = X∗(D). The group schemes
of the form D(Σ) are said to be diagonalizable.
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Proposition 2.22. The Tannakian category Mot(Fq) ⊗ Qal is neutral, and the
group associated with any fibre functor over Qal is the diagonalizable group scheme
P (q) with X∗(P (q)) = W (q).

Proof. We first recall a general result on Tannakian categories.

Lemma 2.23. Let T be a semisimple Tannakian category over a field k of charac-
teristic zero. If every simple object of T has rank 1, then for any fibre functor ω
of T over k, Aut⊗(ω) = D(Σ) where Σ is the set of isomorphism classes of simple
objects in T with the group structure given by tensor product.

Proof. Let G = Aut⊗(ω). Then G is a pro-reductive affine group scheme over
k whose simple representations are all of dimension 1. This implies that G is
diagonalizable and that the simple representations correspond to the characters of
G. Therefore X∗(G) = Σ(T), and G = D(Σ(T)). �

Because Mot(Fq) is Tannakian, it has fibre functor over some field Ω, which
we may assume to be algebraically closed and to contain Qal. Then Mot(Fq) ⊗
Ω is neutral, and (2.23) and the analogue of (2.21) for Ω show that the affine
group scheme associated with any fibre functor is P (q). This implies that the band
of Mot(Fq) ⊗ Qal is represented by the affine group scheme P (q) over Qal. The
obstruction to the existence of a fibre functor over Qal is a class in H2(Qal, P (q))
(cohomology with respect to the fpqc topology) (see Saavedra 1972, III.3.2). In
contrast to the more common cohomology groups, those with respect to the fpqc
topology commute with projective limits, and so H2(Qal, P ) = lim←−H

2(Qal, P ′)
where the limit is over the algebraic quotients of P . But for an algebraic group,
the cohomology groups with respect to the fpqc and fppf topologies agree (ibid.
III.3.1), and so H2(Qal, P ) = 0. �

Remark 2.24. For each element π ∈ W (q), choose a simple motive X(π) over Fq
with Weil number π. Let ω be a fibre functor, and choose a nonzero element
eπ ∈ ω(X(π)) for each π. Then

(fπ) �→
∑

fπ(eπ) : ⊕π∈W(q) Hom(X(π),X) −→ ω(X)

is an isomorphism for all motives X.
Let T be a Tannakian category over a field k, and let ω be a fibre functor over

some extension field L. Then Aut⊗(ω) is an affine group scheme over L. In
general, it only has the structure of a band over k, but when it is commutative, it
is independent of the fibre functor, and it is defined over k. (For an intrinsic way
of looking at the group, see the subsection on the fundamental group below.)

An affine group scheme over a field k is said to be of multiplicative type if it
becomes diagonalizable over kal. For fields k of characteristic zero, the correspon-
dence between diagonalizable groups and abstract abelian groups extends to a cor-
respondence between group schemes of multiplicative type and discrete Γ-modules,
Γ = Gal(kal/k).



MOTIVES OVER FINITE FIELDS 25

Corollary 2.25. The category Mot(Fq) has a fibre functor ω over Qal; for any
such ω, Aut⊗(ω) is the group scheme of multiplicative type P (q) over Q such that
X∗(P (q)) = W (q) (as a Γ-module).

Proof. If ω is a fibre functor for Mot(Fq)⊗Qal, then the composite

Mot(Fq) −→Mot(Fq)⊗Qal ω−→ VecQal

is a fibre functor forMot(Fq). Clearly the associated affine group scheme is a group
of multiplicative type P with character group W(q), and one verifies directly that
the action of Gal(Qal/Q) on P agrees with its natural action on W (q). �

Remark 2.26. The same arguments show that Mot(F) has a fibre functor over
Qal, and that the associated affine group scheme is the pro-torus P (p∞) with
X∗(P (p∞)) = W (p∞).

The group schemes P (q) and P (p∞).
By definition P (q) and P (p∞) are the affine group schemes of multiplicative type
over Q such that

X∗(P (q)) = W (q), X∗(P (p∞)) = W (p∞).

For a CM-field L ⊂ Qal Galois over Q, define WL(q) to be the subgroup of W (q)
of π ∈ L such that

‖π‖w ∈ qZ, all primes w of L.

Note that this condition has to be checked only for the primes w of L lying over p
or ∞ since for other primes ‖π‖w = 1. Let WL

0 (q) be the subgroup of π ∈ WL(q)
of weight 0. Define group schemes over Q by:

X∗(PL(q)) = WL(q), X∗(PL
0 (q)) = WL

0 (q).

Proposition 2.27. Let F be the maximal totally real subfield of L.

(a) If p is a square in L, then WL(q) = WL
0 (q)⊕ q

1
2 Z; if further q is a square in

Q, then PL(q) = PL
0 (q)×Gm.

(b) Let q = pn, for n >> 1; there is an exact sequence

0 −→ WL
0 (q)/torsion

α−→ ⊕w|pZw
β−→ ⊕v|pZv −→ 0

where the sums are over the primes of L and F respectively dividing p, and
α and β are defined as follows:

α(π) =
∑

n(w) · w if ‖π‖w = qn(w);

β(
∑

n(w) · w) = ∑
n(w) · (w|F ).
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Proof. (a) For any integer m and w|p,

‖qm
2 ‖w = q−[L : Qp]

m
2 ,

and the hypothesis on L implies that [L : Qp] is even. Obviously therefore q
m
2 ∈

WL(q), and an element π of WL(q) of weight m can be written π = (π/q
m
2 ) · qm

2

with (π/q
m
2 ) ∈ WL

0 (q). If q is an even power of p, then Gal(Qal/Q) acts trivially
on q

1
2 Z, and the corresponding group scheme is Gm.

(b) The only serious difficulty is in showing that α maps onto the kernel of β.
For this one has to be able to construct Weil numbers. We explain how to do this
in (4.14). �

Define
WL(p∞) = lim−→WL(pn), WL

0 (p
∞) = lim−→WL

0 (p
n)

and let PL(p∞) and PL
0 (p∞) be the groups of multiplicative type over Q with

character groups WL(p∞) and WL
0 (p∞). Sometimes we drop the p∞ from the

notation. For any N ≥ 1, there is a commutative diagram:

WL
0 (q)

α−−−−→ ⊕w|pZ�π �→πN ‖
WL
0 (qN ) α−−−−→ ⊕w|pZ.

Therefore, on passing to the limit in (2.27), we obtain the following result.

Corollary 2.28. (a) If p is a square in L, WL(p∞) = WL
0 (p∞)⊕Z and PL(p∞) =

PL
0 (p

∞)×Gm.

(b) There is an exact sequence

0 −→WL
0 (p

∞) −→ ⊕w|pZw −→ ⊕v|pZv −→ 0.

In particular, we see that PL(p∞) is an algebraic group.

Remark 2.29. The group W (p∞) is torsion-free, and the subgroup W0(p∞) is divis-
ible: a Weil pn-number π of weight zero is also a Weil pnN -number of weight zero,
and (π, nN) represents the N th root of the class of (π, n) in W0(p∞). Thus W0(p∞)
is a Q-vector space.

Fix a CM-field L ⊂ Qal Galois over Q. Let PL,n
0 (p∞) be the torus with character

group n−1WL
0 (p

∞) ⊂ W (p∞). For all n and N there is a commutative diagram

PL,nN
0 (p∞) ≈−−−−→ PL

0 (p∞)� �N

PL,n
0 (p∞) ≈−−−−→ PL

0 (p∞)
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corresponding to

(nN)−1W0(p∞)
(nN)−1

←−−−−− WL
0 (p∞)�inclusion �N

n−1WL
0 (p∞) n−1

←−−−− WL
0 (p∞)

and so the projective system (PL,n
0 (p∞))n is the universal covering torus4 of

PL
0 (p∞).

The fundamental group of Mot(F).
Let T be a Tannakian category. Then Ind(T) also has a tensor structure, and we
define a commutative ring in Ind(T) to be an object A of Ind(T) together with a
commutative associative product A⊗A → A admitting an identity 1→ A. In order
to be able to use our geometric intuition, we define the category of affine schemes
in T to be the opposite of the category of commutative rings in Ind(T), and we
write Sp(A) for the affine scheme in T corresponding to A. (For more details, see
Deligne 1989, §5.)

For example, if T is the category of finite-dimensional vector spaces over k, then
a commutative ring in Ind(T) is just a commutative k-algebra in the usual sense,
and the category of affine schemes in T can be identified with the category of affine
schemes over k.

Since tensor products exist in the category of commutative rings in Ind(T), fibre
products exist in the category of affine schemes in T. Therefore, we can define an
affine group scheme in T to be a group in the category of affine schemes in T. An
action of an affine group scheme G = Sp(A) in T on an object X of T is a morphism
X → X ⊗ A satisfying the usual axioms for a comodule (Waterhouse 1979, 3.2).

Theorem 2.30. Let T be a Tannakian category over a field k. There exists an
affine group scheme π(T) in T together with an action of π(T) on every object X
of T such that, for every fibre functor ω over a k-algebra R, the actions of the affine
group scheme ω(π(T)) on the R-modules ω(X) identifies ω(π(T)) with Aut⊗R(ω).
The affine group scheme π(T) and the actions of it on the objects of T are uniquely
determined by this condition.

Proof. See (Deligne 1990, 8.13, 8.14). �

Example 2.31. Let T = Repk(G) with G = SpecA. Then π(T) = G. The action
of π(T) on the objects of T extends to objects of Ind(T), and, for T = Repk(G),
the action of G on A is induced by the action of G on itself by inner automorphisms.
(Ibid. 8.14.)

Remark 2.32. An exact tensor functor η : T1 → T2 of Tannakian categories over
a field k defines a morphism π(T2) → η(π(T1)) of affine group schemes in T2.

4For a torus T , the projective system (Tn, Tmn
m−→ Tn) with Tn = T for all n is called the

universal covering torus of T . It has character group X∗(T )⊗Q.
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For each object X of T1, η(π(T1)) acts on η(X), and this action is compatible via
π(T2)→ η(π(T1)) with the natural action of π(T2) on η(X). (Ibid. 8.15.)

Theorem 2.33. Let T1 and T2 (
= 0) be Tannakian categories over a field k, and
let η : T1 → T2 be an exact tensor functor. Then η defines a tensor equivalence of
T1 with the category of pairs (Y, ρ) consisting of an object Y of T2 and an action
ρ of η(π(T1)) on Y compatible with the action of π(T2).

Proof. See Deligne 1990, 8.17. �

Remark 2.34. When T is a Tannakian category over k and η is a fibre functor over k,
then (2.33) becomes the fundamental classification theorem for neutral Tannakian
categories (Breen 1992, §1; Deligne and Milne 1982, 2.11).

Corollary 2.35. Let η : T1 → T2 be an exact tensor functor of Tannakian cate-
gories over a field k. If π(T2)→ η(π(T1)) is an isomorphism, then η : T1 → T2 is
an equivalence of tensor categories.

Proof. Immediate consequence of the theorem. �

Corollary 2.36. Let T be a Tannakian category over k. An object X in T is
isomorphic to a direct sum of copies of 1 if and only if π(T) acts trivially on it.

Proof. Take T1 in (2.33) to be the category (≈ Veck) of multiples of 1 in T, and
note that π(Veck) = 1. �

Remark 2.37. It follows from (2.36) that we can identifyVeck with the subcategory
of T of objects on which π(T) acts trivially. If π(T) = Sp(A) is commutative, then
the action of π(T) on A is trivial, and so π(T) is an affine group scheme in the
Tannakian category Veck ⊂ T, i.e., it is an affine group scheme over k in the usual
sense.

Proposition 2.38. Let <1> (≈ VecQ) be the subcategory of Mot(Fq) on which
π(Mot(Fq)) acts trivially. Then π(Mot(Fq)) is the affine group scheme in <1>
of multiplicative type having character group W (q). Similarly, π(Mot(F)) is the
affine group scheme in the subcategory <1> ofMot(F) of multiplicative type having
character group W (p∞).

Proof. The affine group scheme π(Mot(Fq)) in Mot(Fq) is commutative because
its image under one (hence every) fibre functor is commutative. The remaining
statements follow from (2.25) and (2.26). �

In (3.4) we make the result more precise by describing the action of π on each
motive.

The decomposition of Mot(F) into a tensor product.
We first recall from (Deligne 1990, §5), the notion of the tensor product of two
Tannakian categories. We say that a k-bilinear functor is left (or right) exact if it
is left (or right) exact in each variable.
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Theorem 2.39. Let T1 and T2 be Tannakian categories over a field k which, for
simplicity, we take to be of characteristic zero. There exists a category T1 ⊗ T2
together with a right exact k-bilinear functor

⊗ : T1 ×T2 → T1 ⊗T2
such that, for any abelian k-linear category C, the functor ⊗ defines an equivalence
from the category of right exact k-linear functors T1 ⊗T2 → C to the category of
right exact k-bilinear functors T1 ×T2 → C.

Proof. See (Deligne 1990, 5.13). �

Properties.
(2.40.1) The pair (T1⊗T2,⊗) is uniquely determined up to an equivalence which

itself is unique up to a unique isomorphism (ibid. p143).
(2.40.2) The functor ⊗ is exact in each variable (ibid. 5.13).
(2.40.3) For objects X1, Y1 of T1 and X2, Y2 of T2,

Hom(X1, Y1)⊗k Hom(X2, Y2)
≈−→ Hom(X1 ⊗X2, Y1 ⊗ Y2).

(2.40.4) There is a unique tensor structure on T1 ⊗T2 such that

⊗(X1 ⊗ Y1,X2 ⊗ Y2) = X1 ⊗ Y1 ⊗X2 ⊗ Y2,

X1, Y1 ∈ ob(T1), X2, Y2 ∈ ob(T2).

(The ⊗ on the left is the functor ⊗ : T1 ×T2 → T1 ⊗ T2). Relative to
this tensor structure, T1 ⊗T2 is a Tannakian category (ibid. 5.17, 6.9).

(2.40.5) The functor

inj1 : T1 = T1 ⊗Veck → T1 ⊗T2, X1 �→ X1 ⊗ 1,

identifies T1 with a full subcategory of T1⊗T2 stable under passage to
subquotients. A similar statement holds for T2, and

⊗(X1,X2) = (X1 ⊗ 1)⊗ (1 ⊗X2).

The canonical map

π(T1 ⊗T2)→ inj1(π(T1))× inj2(π(T2))

is an isomorphism. If T1 and T2 are both semisimple, then so also is
T1 ⊗T2, and every object of T1 ⊗T2 is a direct factor of an object of
the form X1 ⊗X2, X1 ∈ ob(T1), X2 ∈ ob(T2). (Ibid. p183.)

Let Mot0(F) be the subcategory of Mot(F) of motives of weight zero, and let E
be the strictly full Tannakian subcategory of Mot(F) generated by a supersingular
elliptic curve A over F. Since any two such curves are isogenous, E is independent
of the choice of A. Note that E is graded, and contains the Tate object.
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Theorem 2.41. The functor

(X,Y ) �→ X ⊗ Y : Mot0(F)×E −→Mot(F)

defines an equivalence of tensor categories

η : Mot0(F) ⊗E→Mot(F).

Proof. According to (2.35), it suffices to check that the homomorphism

π(Mot(F)) −→ η(π(Mot0(F)⊗E))
induced by η is an isomorphism. But, by (2.40.5),

π(Mot0(F)⊗E) = π(Mot0(F))× π(E),

and the homomorphism can be identified with the isomorphism

P (p∞) −→ P0(p∞)×Gm

of (2.28a). �

Thus the study of Mot(F) breaks down into the study of Mot0(F) and E.

The polarization on Mot(F) ⊗R.

For any CM-field L ⊂ Qal Galois over Q and any n ≥ 1, let MotL,n0 (F) be the
subcategory of Mot0(F) containing those motives X such that πX ∈ n−1WL

0 (p∞).
The fundamental group of MotL,n0 (F) is PL,n

0 (p∞) (see 2.29 for this notation).

Proposition 2.42. For any CM-field L ⊂ Qal Galois over Q, MotL,n0 (F) ⊗ R is
neutral.

Proof. As we explained in the proof of (2.22), the obstruction to the existence of a
fibre functor is an element of H2(R, PL,n

0 (p∞)). But PL,n
0 (p∞)R is an anisotropic

torus over R, and hence is isomorphic to Ud, d = dimPL,n
0 (p∞), where U is the

kernel of
1 −→ U −→ (Gm)C/R −→ Gm −→ 1.

Clearly H2(R, U) = H1(R,Gm) = 0, and so H2(R, PL,n
0 (p∞)) = 0. �

We shall need the notion of a polarization of a nongraded Tannakian category.
Let T be a Tannakian category over R, and let Z be the centre of π(T). We can
regard Z as a commutative affine group scheme over R in the usual sense (cf. 2.38),
and Z(R) = Aut⊗(idT). Let ε ∈ Z(R) and suppose there is given for each object
X of T an equivalence class (for the relation of compatibility) Π(X) of Weil forms
of parity ε. We say that Π is a polarization on T if
(2.43.1) for all X and Y

ϕ ∈ Π(X), ψ ∈ Π(Y ) =⇒ ϕ⊕ ψ ∈ Π(X ⊕ Y );

(2.43.2) for all X and Y

ϕ ∈ Π(X), ψ ∈ Π(Y ) =⇒ ϕ⊗ ψ ∈ Π(X ⊗ Y ).
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Theorem 2.44. There are exactly two graded polarizations on Mot(F)⊗ R.

Proof. A graded polarization on Mot(F) ⊗ R restricts to a graded polarization on
E and a polarization of parity 1 on Mot0(F)⊗R, and so the theorem follows from
the next two lemmas. �

Lemma 2.45. There are exactly two graded polarizations on E⊗ R.

Proof. The fundamental group of E is Gm. Therefore E ⊗ R is determined up to
a tensor equivalence inducing the identity map on Gm by its cohomology class in
H2(R,Gm) = Br(R) = 2−1Z/Z. This class can not be zero, because E does not
have a fibre functor over R. Therefore E⊗R is Gm-equivalent to V∞, which, as we
observed in (1.7), has exactly two graded polarizations. �

Lemma 2.46. There exists a unique polarization on Mot0(F)⊗ R with parity 1.

Proof. We first recall the classification of polarizations on neutral Tannakian cate-
gories over R (Deligne and Milne 1982, pp179–183). Let G be an algebraic group
over R with centre Z, and let C ∈ G(R). A G-invariant bilinear form ψ : V ×V → R

is said to be a C-polarization if

(x, y) �→ ψ(x,Cy)

is a positive-definite symmetric form on V . When every object of RepR(G) has
a C-polarization, then C is called a Hodge element. There is then a polarization
ΠC of RepR(G) with parity C2 for which the positive forms are exactly the C-
polarizations. Every polarization of RepR(G) is of the form ΠC for some Hodge
element. If C and C ′ are Hodge elements, then there exists a g ∈ G(R) and a
unique z ∈ Z(R) such that C ′ = zgCg−1; moreover ΠC′ = zΠC , and so ΠC′ = ΠC

if and only if C and C ′ are conjugate in G(R). An element C ∈ G(R) such that
C2 ∈ Z(R) is a Hodge element if and only if adC is a Cartan involution.

Fix a CM-field L, and consider the subcategoryMotL,n0 (F) ofMot(F) described
above. The polarizations of parity 1 of MotL,n0 (F)⊗R are in one-to-one correspon-
dence with the elements C of PL,n

0 (R) of order 2. Consider one such polarization
ΠC . If ΠC extends to a polarization of MotL,2n0 (F)⊗R, say to ΠC′ where C ′ is an
element of order 2 in PL,2n

0 (R), then C ′ maps to C under the canonical map (2.29)
PL,2n
0 (R)→ PL,n

0 (R). But it is clear from the commutative diagram in (2.29) that
this map kills all elements of order 2. Therefore C = 1, and we have proved the
uniqueness.

Because (PL,n
0 )R is compact, idPL,n

0
is a Cartan involution, and so the element

C = 1 defines a polarization on MotL,n0 (F). For varying n and L, these polar-
izations are compatible, and so they define a polarization on ∪L,nMotL,n0 (F) =
Mot0(F). �

Remark 2.47. We have shown that the Tate conjecture implies that Mot(F) ⊗
R is polarizable. Grothendieck’s standard conjectures imply more, namely, that
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there is a polarization on Mot(F) whose Weil forms for the motive h(V ) of an
algebraic variety V have a specific algebraic construction (Saavedra 1972, VI.4.4).
In particular, it implies that there is a polarization Π on Mot(F) such that for any
abelian variety A the Weil form defined by a polarization on A (in the usual sense
of algebraic geometry) lies in Π(h1(A)).

Alternative approach.
In the above we have made use of Deligne’s results on the Weil conjectures. Grothen-
dieck originally envisaged that these results would be obtained as a consequence of
his standard conjectures (Grothendieck 1969). The standard conjectures imply di-
rectly thatMot(Fq) is a polarizable (hence semisimple) Tannakian category. Using
only that, we have the following result.

Proposition 2.48. Let X be a motive of weight m over Fq , and let α �→ αt be
the involution of End(X) defined by a Weil form ϕ. The following statements hold
for π = πX :

(a) π · πt = qm; hence Q[π] is stable under the involution α �→ αt;
(b) Q[π] ⊂ End(X) is a product of fields;
(c) for every homomorphism ρ : Q[π]→ C, ρ(πt) = ι(ρπ), and |ρπ| = qm/2.

Proof. (a) By definition, ϕ is a morphism X ⊗X → T⊗(−m). It is invariant under
π, and so

ϕ(πx, πy) = π(ϕ(x, y)) = qmϕ(x, y) = ϕ(x, qmy).

But ϕ(πx, πy) = ϕ(x, πtπy), and because ϕ is nondegenerate, this implies that
πt · π = qm. Therefore Q[π] is stable under α �→ αt, and we obtain (a).

(b) Let R be a commutative subalgebra of End(X) stable under α �→ αt, and let
r be a nonzero element of R. Then s = rrt 
= 0 because Tr(rrt) > 0. As st = s,
Tr(s2) = Tr(sst) > 0, and so s2 
= 0. Similarly s4 
= 0, and so on, which implies that
s is not nilpotent, and so neither is r. Thus R is a finite-dimensional commutative
Q-algebra without nonzero nilpotents, and the only such algebras are products of
fields.

(c) In an abuse of notation, we set R[π] = R⊗Q Q[π]. As in (b), this is a product
of fields stable under α �→ αt. This involution permutes the maximal ideals of R[π]
and, correspondingly, the factors of R[π]. If the permutation were not the identity,
then α �→ αt would not be a positive involution. Therefore each factor of R[π]
is stable under the involution. The only involution of R is the identity map (=
complex conjugation), and the only positive involution of C is complex conjugation.
Therefore we obtain the first statement of (c), and the second then follows from
(a). �

This (conjectural) proof of the Riemann hypothesis for motives is very close to
Weil’s original proof for abelian varieties (Weil 1940).

Mixed motives over a finite field.
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Theorem 2.49. Every mixed motive over a finite field is a direct sum of pure
motives.

Proof. If the category of mixed motives over a finite field does not exist, then there
is nothing to prove. Otherwise, according to any reasonable definition, a mixed
motive X over Fq will have an increasing weight filtration,

· · · ⊂Wi−1X ⊂ WiX ⊂ · · ·

such that WiX/Wi−1X is a pure motive of weight i. Let πX be the Frobenius
endomorphism of X. The same argument as in §1 shows that there is a polynomial
Pi(X) with rational coefficients such that Pi(πX ) ·X = WiX/Wi−1X, and so X =
⊕WiX/Wi−1X. �

Remark 2.50. As S. Lichtenbaum pointed out to me, the theorem is not expected
to be true for the category of mixed motives over a finite field with coefficients in
Z (a Z-linear Tannakian category). In fact, it is expected that Ext1(Z,Z(1)) ≈ k×

in the category of mixed motives over a field k.

Notes. The results (2.41), (2.46), and (2.49) were explained to me by Deligne (who
credits them to Grothendieck). For the rest, this section represents my attempt to
extend the Weil-Tate-Honda theory of abelian varieties over finite fields to motives.

§3. Characterizations of the Category

of Motives over F and its Fibre Functors

Characterization of P (q) and P (p∞).
Let P = P (q), and let Γ = Gal(Qal/Q). Then

P (Q) = Hom(X∗(P ),Qal×)Γ = Hom(W (q),Qal×)Γ.

The inclusion map W (q) ↪→ Qal× commutes with the action of Γ—that is how we
define the Galois action on W (q)—and hence corresponds to an element f ∈ P (Q),
which we call the Frobenius element. It is characterized by the following condition:
if χπ is the character of P corresponding to the Weil q-number π, then χπ(f) = π.

Proposition 3.1. Let P = P (q). For any algebraic group T over Q of multiplica-
tive type and element a ∈ T (Q) such that χ(a) ∈ W (q) for every character χ of T
defined over Qal, there is a unique homomorphism α : P → T carrying f to a.

Proof. If α exists, then for every character χ of T , we must have

(χ ◦ α)(f) = χ(a).

Define α to be the homomorphism corresponding to the map on characters

X∗(T )→W (q), χ �→ χ(a). �
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Obviously, the pair (P (q), f) is uniquely determined by the condition in the
proposition (up to a unique isomorphism).

For each L Galois over Q, there is similarly a canonical element fL ∈ PL(pn)
having the following universal property: for any algebraic group T of multiplicative
type over Q and a ∈ T (Q) such that χ(a) ∈ WL(pn) for all characters of T , there
is a unique homomorphism α : PL(pn)→ T such that α(fL) = a.

There is a similar, but more complicated, characterization of P (p∞), but first we
compare P (p∞) with P (q).

Proposition 3.2. Let L ⊂ Qal be a CM-field Galois over Q, and let m be the
number of roots of 1 in L. For n >> 1, there is an exact sequence

0 −→ PL(p∞) −→ PL(pn) fL �→1−−−−→ Z/mZ −→ 0

identifying PL(p∞) with the identity component of PL(pn). For any n, there is an
exact sequence

P (p∞) −→ P (pn)
f �→1−−−→ Ẑ −→ 0.

Proof. It follows from (2.27b) that, for n >> 1, the map

WL(pn)/torsion −→WL(p∞)

is bijective. Since the torsion subgroup of WL(pn) is µ(L), the group of roots of 1
in L, this gives an exact sequence

0 −→ µ(L) −→WL(pn) −→ WL(p∞) −→ 0.

This is the sequence of character groups of the first sequence in the proposition. Be-
cause X∗(PL(p∞)) is the quotient of X∗(PL(pn)) by its torsion subgroup, PL(p∞)
is the identity component of PL(pn). The second exact sequence can be derived in
the same way as the first. �

Consider fL ∈ PL(pn)(Q). Then (fL)m ∈ PL(p∞)(Q) if m is the number of
roots of 1 in L, and we write fLnm for this element. In this way we obtain a family
(fLn )n>>1 of elements of PL(p∞)(Q) with the property that (fLn )N = fLnN for all
N > 1.

If L′ ⊃ L, then fL
′

n �→ fLn under PL′
(p∞)(Q) → PL(p∞)(Q) whenever fL

′
n is

defined. Unfortunately, as L grows, the smallest n for which fLn is defined tends to
infinity. Thus for no n do we get an element (fLn )L ∈ P (p∞)(Q) =df lim←−P

L(p∞)(Q).

This suggests the following definition: let M be an affine group scheme over a
field k, and write it as a projective limit, M = lim←−M

L, of its quotients of finite-type;
suppose that for each L and n >> 1 (depending on L) there is given an element
fLn ∈ ML(k); if for each L < L′ and n|n′, the element (fLn )

n′/n is the image of
fL

′
n′ under the map ML′

(k) → ML(k), then we call the family (fLn ) a germ of an
element of M(k). Note that, for any homomorphism α : M → G from M into an
algebraic group G, there is a well-defined element α(fn) ∈ G(k), n >> 1, since we
can set α(fn) = α(fLn ) for any choice of L such that α factors through ML.
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Proposition 3.3. There is a unique germ of an element f = (fLn ) in P (p∞)(Q)
having the following property: for any algebraic group T over Q of multiplicative
type and element a ∈ T (Q) such that χ(a) ∈W (pn) for every character of T defined
over Qal, there is a unique homomorphism α : P → T such that α(fnN ) = aN for
some N ≥ 1.

Proof. Straightforward from the above discussion. �

Applications.

We apply the above results and Theorem 2.33 to obtain descriptions of Mot(Fq),
Mot(Fq)⊗Q�, and Mot(F)⊗Q�.

Recall (2.38) that π(Mot(Fq)) = P (q), and that it acts on each object X of
Mot(Fq).

Lemma 3.4. The element f of P (q)(Q) acts on a motive X over Fq as πX ; the
germ of an element f of P (p∞)(Q) acts on a motive X over F as πX .

Proof. The first statement follows directly from the various definitions, and the
second follows directly from the first. �

Proposition 3.5. Let q = pn. The natural functor

Mot(Fq) −→Mot(F)

identifies Mot(Fq) with the category of pairs (X,π) consisting of a motive X over
F and an endomorphism π of X such that (π, n) represents πX .

Proof. According to (2.33), the functor identifiesMot(Fq) with the category of pairs
(X, ρ) in which X is a motive over F and ρ is an action of P (q) on X compatible
with the action of P (p∞). It follows from (3.1) that to give an action of P (q) on
X commuting with the action of the endomorphisms of X is to give an element
π ∈ (Gm)Q[πX ]/Q such that χ(π) ∈W (q) for all characters χ. The action of P(q) on
X defined by π is compatible with the action of P if and only if (π, n) represents
πXn . �

Since the proposition determinesMot(Fq) in terms of Mot(F), we shall concen-
trate on characterizing Mot(F).

Proposition 3.6. The choice of a functor

ω∞ : Mot(Fq)⊗ R −→ V∞

as in (1.10) identifies Mot(Fq) ⊗ R with the category of pairs (V, π) consisting of
an object V of V∞ and a semisimple endomorphism π of V whose eigenvalues on
the part of V of weight m are Weil q-numbers of weight m. Similarly, the choice of
a functor

ω∞ : Mot(F)⊗ R −→ V∞
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identifies Mot(F) ⊗ R with the category of pairs (V, (πn)) where (πn) is a germ of
an endomorphism of V satisfying an analogous condition.

Proof. The fundamental group of V∞ is Gm, and the map Gm → P (q)R induced
by ω∞ is the weight map w (corresponding to the map on characters π → wt(π)).
According to (2.33), ω∞ identifies Mot(Fq) ⊗ R with the category of pairs (V, ρ)
in which V is an object of V∞ and ρ is an action of P on V compatible with the
action of Gm. To give such a ρ is the same as to give an endomorphism π as in the
statement of the proposition. �

Let Frobn be the geometric Frobenius element x �→ xp
−n

of Gal(F/Fpn ).

Proposition 3.7. Let q = pn. For � 
= p,∞, the functor

ω� : Mot(Fq)⊗Q� → V�(Fq)

identifiesMot(Fq)⊗Q� with the full subcategory ofV�(Fq) consisting of semisimple
representations (V, ρ) of Gal(F/Fpn) such that the eigenvalues of ρ(Frobn) are Weil
q-numbers. The functor

ω� : Mot(F)⊗Q� → V�(F)

identifies Mot(F) ⊗ Q� with the full subcategory of V�(F) consisting of germs of
semisimple representations (V, [ρ]) such that, for any ρ ∈ [ρ] and any n for which it
is defined, ρ(Frobn) has eigenvalues that are Weil pn-numbers.

Proof. The functor ω� is fully faithful, and so (2.33) shows that it identifies
Mot(Fq)⊗ Q� with the full subcategory of V�(Fq) of objects for which the action
of π(V�(F)) factors through π(Mot(Fq)⊗Q�). The fundamental group of V�(Fq)
is the group of multiplicative type with character group U , the group of units in
the ring of integers in Qal

� , and the map on fundamental groups corresponds to the
inclusion W (q) ↪→ U defined by some choice of an embedding Qal ↪→ Qal

� . The first
statement is now clear, and the second is proved similarly. �

Proposition 3.8. The functor

ωp : Mot(Fq)⊗Qp → Vp(Fq),

identifies Mot(Fq) ⊗ Qp with the full subcategory of objects (M,FM ) in Vp(Fq)
such that πM acts semisimply on M with eigenvalues that are Weil q-numbers. The
functor

ωp : Mot(F) ⊗Qp → Vp(Fq),

identifies Mot(F) ⊗ Qp with the full subcategory of objects (M,FM ) in Vp(F)
such that, for some model (M ′, FM ′) of (M,FM ) over a finite field Fq , πM ′ acts
semisimply on M with eigenvalues that are Weil q-numbers.

Proof. The proof is similar to that of (3.7). �
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The cohomology of P .

Choose a prime w0 of Qal lying over p, and use the same symbol to denote its
restriction to any subfield. Let L ⊂ Qal be a CM-field Galois over Q, and let
D(w0) ⊂ Gal(L/Q) be the decomposition group of w0. Define E = LD(w0), and
let F be the maximal totally real subfield of E. Thus either ι /∈ D(w0) and E is
a CM-field with F as its maximal totally real subfield, or ι ∈ D(w0) and E and F
are equal and totally real.

Proposition 3.9. There is an exact sequence

0 −→ (Gm)F/Q −→ (Gm)E/Q −→ PL
0 (p

∞) −→ 0.

Proof. To verify that a sequence of tori is exact, it suffices to check that the corre-
sponding sequence of character groups is exact. But on applyingX∗ to the sequence
in the corollary, we obtain the sequence in (2.28b). �

Proposition 3.10. There are exact sequences:

0 −→ F× −→ E× −→ H0(Q, PL
0 (p

∞)) −→ 0,

0 −→ H1(Q, PL
0 (p

∞)) −→ Br(F ) −→ Br(E) −→ H2(Q, PL
0 (p

∞)) −→ 0.

Proof. Except for the zero at the right of the second sequence, the statement fol-
lows directly from the preceding proposition and Hilbert’s Theorem 90, but a the-
orem of Tate shows that H3(F,Gm) ≈−→ ⊕v realH3(Fv,Gm), and H3(R,Gm) =
H1(R,Gm) = 0 (see Milne 1986, I.4.10). �

For an affine group scheme G over a field K, we define

Hr(K,G) = lim←−H
r(K,G′) (Galois cohomology)

where the limit is over the quotients G′ of G of finite type over K. When K is a
number field, we set

Kerr(K,G) = Ker(Hr(K,G) −→∏
vH

r(Kv, G)) (product over all primes of K).

Proposition 3.11. Let L ⊂ Qal be a CM-field Galois over Q. Then:

(a) Ker1(Q, PL
0 (p∞)) = 0;

(b) H1(Q, P0(p∞)) = 0 = H1(Q, P (p∞));
(c) H2(Q, PL

0 (p
∞)) ≈−→ ⊕�H2(Q�, P

L
0 (p

∞)) (sum over all primes of Q);
(d) Ker2(Q, PL(p∞)) = 0 when L contains

√
p.



38 J. S. MILNE

Proof. We drop “p∞” from the notation.
(a) The map

H1(Q, PL
0 ) −→ ⊕�H1(Q�, P

L
0 )

can be identified with the map

Br(E/F ) −→ ⊕vBr(Ew/Fv)

(sum over all primes of F ; w is a prime of E lying over v), which class field theory
shows to be injective.

(b) Let T be a torus, and let T̃ be the universal covering torus of T . One sees
immediately from the definition of T̃ that, for any contravariant functor H from
tori to abelian groups, H(T̃ ) = H(T ) ⊗Z Q. In particular,

H1(Q, P̃L
0 ) = H1(Q, PL

0 )⊗Z Q = Br(E/F )⊗Z Q = 0.

But, as we noted in (2.29), the map P0 → PL
0 factors through P̃L

0 → PL
0 , and so

the map H1(Q, P0)→ H1(Q, PL
0 ) is zero. Since H

1(Q, P0) = lim←−LH1(Q, PL
0 ), this

shows that it is zero. From the cohomology sequence of

0 −→ Gm −→ P −→ P0 −→ 0

we see that
H1(Q, P0) = 0 =⇒ H1(Q, P ) = 0.

(c) Consider the exact commutative diagram,

0 0� �
0 −→ Br(E/F) −→ Br(F ) −→ Br(E) −→ H2(Q, PL

0 ) −→ 0� � � �
0 −→ ⊕vBr(Ew/Fv) −→ ⊕vBr(Fv) −→ ⊕wBr(Ew) −→ ⊕vH2(Qp, P

L
0 ) −→ 0� � �

0 −→ 1
2
Z −→ Q/Z

2−→ Q/Z −→ 0� � �
0 0 0

in which the two middle columns are given by class field theory, and the top two
rows are the cohomology sequences of the sequence in (3.9). A diagram chase shows
that H2(Q, PL

0 )
≈−→ ⊕�H2(Q�, P

L
0 ).

(d) If
√
p ∈ L, then PL = PL

0 ⊕Gm, and

Ker2(Q, PL) = Ker2(Q, PL
0 )⊕Ker2(Q,Gm) = 0. �
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Characterization of Mot(F).
As we noted in §2, the Frobenius endomorphisms of motives over Fq form a tensor
endomorphism of the identity functor, i.e., α ◦ πX = πY ◦ α for any morphism
α : X → Y , π1 = id, and πX⊗Y = πX ⊗ πY . In order to handle the Frobenius
endomorphisms of motives over F, we define (for any Tannakian category T) a
germ of a tensor endomorphism of idT to be a family πX of germs of endomorphisms
satisfying the same three conditions. For example, the Frobenius endomorphisms
of the motives over F form a germ of a tensor endomorphism of idMot(F).

Consider a Tannakian category T over Q and a germ π of a tensor endomorphism
of idT such that:
(3.12.1) For all objects X, EndX is a semisimple algebra with centre Q[πX ]

(hence T is a semisimple category).
(3.12.2) For all simple objectsX and representatives (π, n) for πX , π is a Weil pn-

number. Moreover, the invariants of E = End(X) (as a central division
algebra over Q[πX ]) are given by the rule,

‖π‖v = (pn)invv(E),

and
rankX = [E : Q[πX ]]

1
2 · [Q[πX ] : Q].

(3.12.3) The map X �→ [πX ] defines a bijection Σ(T) −→ Γ\W (p∞).
For example, the pair (Mot(F), (πX )) satisfies these conditions, and the next

theorem shows that they determine it up to equivalence.

Theorem 3.13. Let (T, π) and (T′, π′) be two pairs satisfying the conditions
(3.12).

(a) There is a tensor equivalence S : T→ T′ such that, for all objects X of T,
S(πX) = πS(X).

(b) If S1 and S2 are two such tensor equivalences, then there is an isomorphism
α : S1 → S2 of tensor functors; if α′ is a second such isomorphism, then
there is an a ∈ Q× such that α′ = w(a) ·α (i.e., such that α′

X = amαX if X
is pure of weight m).

Proof. The proof will occupy the rest of this subsection.
Let T be a semisimple Tannakian category over a field K of characteristic zero,

and consider T⊗ L where L ⊃ K is a field. Let X be a simple object of T, and let
C be the centre of End(X). Then C is a field, and X ⊗K L decomposes into a sum
of isotypic objects according as C⊗K L decomposes into a product of fields (see the
proof of 2.17). In more detail, if

C ⊗K L = C1 × · · · × Cr,

then
End(X ⊗ L) =

∏
End(X)⊗C Ci

and End(X)⊗C Ci is a central simple algebra over Ci.
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Lemma 3.14. In the above situation, there is a well-defined map

Σ(T ⊗ L) −→ Σ(T)

sending the isomorphism class [Y ] of a simple object Y of T ⊗ L to [X] if Y is a
factor X ⊗ L. The map is surjective, and, when L is Galois over K, its fibres are
the orbits of Gal(L/K) acting on Σ(T⊗ L).

Proof. From (1.3) we know that T⊗ L is a semisimple Tannakian category over L
and every object of T⊗ L is a factor of an object of the form X ⊗ L, X ∈ ob(T).
Let Y be a simple object of T⊗ L. Clearly it is a factor of X ⊗ L for some simple
X. If it is also a factor of X ′ ⊗ L with X ′ simple, then

Hom(X,X ′)⊗ L = Hom(X ⊗ L,X ′ ⊗ L) 
= 0,

and so X ≈ X ′. Thus the map is well-defined. It is obviously surjective.
Assume L is a Galois extension of K. The fibres of the map are invariant under

the action of Gal(L/K), and hence are the unions of orbits. Let X be a simple
object of T, and let C be the centre of End(X). The elements of the fibre over
[X] are indexed by the set of factors of C ⊗K L, which equals HomK(C,L), and
Gal(L/K) acts transitively on this set. �

When we apply the lemma to a pair (T, π) as in (3.12) and L = Qal, we see that
there is a canonical map

Σ(T ⊗Qal) −→ Σ(T),

and for a simpleX in T, the fibre over [X] is HomQ(Q[πX ],Qal). But this set can be
identified with [πX ], and so there is a canonical map Σ(T⊗Qal)→ W (p∞) making
the following diagram commute:

Σ(T⊗Qal) −−−−→ W (p∞)� �
Σ(T) −−−−→ Γ\W (p∞).

Now, the same arguments as in the proof of (2.22) show that there is a unique
isomorphism P → π(T) such that f acts on X as πX , all X. Here P = P (p∞).

Let (T′, π′) be a second pair satisfying (3.12). A tensor equivalence S : T→ T′

maps π to π′ if and only it induces the identity map on P . Therefore, there exists
such an S if and only if T and T′ define the same class5 in H2(Q, P ). Thus we
have to show that the conditions (3.12) determine this class.

Let X be a simple object of T. The action of P on X defines a homomorphism
P → (Gm)Q[πX ]/Q, which is uniquely determined by the fact that it sends f to πX .

5We are using that the gerb of fibre functors determines a Tannakian category up to a unique

equivalence (Saavedra 1972, III.3.2.3.2), that gerbs with band B are classified up to B-equivalence
by H2(k, B) (this is how H2(k, B) is defined in (Giraud 1971)), and that when B is the band

defined by a smooth affine commutative group scheme P , H2(k, B) equals the group H2(k, P )

defined above (Saavedra 1972, III.3.1).
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Lemma 3.15. The map

H2(Q, P ) −→ H2(Q, (Gm)Q[πX ]/Q) = Br(Q[πX ]),

sends the class of T in H2(Q, P ) to the class of EndX in Br(Q[πX ]).

Proof. This can be proved by the same argument as (Saavedra 1972, VI.3.5.3). �

Thus we have to prove the following statement:
(∗) An element c of H2(Q, P ) is zero if its image in H2(Q, (Gm)Q[π]/Q) is zero

for all π ∈W (p∞).
The group P = P0×Gm, and the projection P → Gm can be identified with the

map P → (Gm)Q[π]/Q where π is represented by (p
n
2 , n) for any even n (see 2.28).

Therefore the component of c in H2(Q,Gm) is zero. Henceforth, we regard c as an
element of H2(Q, P0).

Let cL be the image of c in H2(Q, PL
0 ). Because Ker2(Q, PL

0 ) = 0 (see 3.11),
it suffices to show that the image of cL in H2(Q�, P

L
0 ) is zero for all �. This is

automatic for � =∞ because H2(R, PL
0 ) = 0 (see the proof of 2.42).

Thus consider an � 
=∞, and let D(�) be the decomposition group of some prime
of Qal lying over �. Let π ∈ WL

0 (p
∞). A standard duality theorem (Milne 1986,

I.2.4) shows that the map

H2(Q�, P
L
0 ) −→ H2(Q�, (Gm)Q[π]/Q)

is obtained from the map

X∗(PL
0 )D(�) ← X∗((Gm)Q[π]/Q)D(�)

by applying the functor Hom(·,Q/Z).
Thus we have to prove the following statement:
(**): Every element of WL

0 (p∞)D(�) is the image of an element of
X∗((Gm)Q[π]/Q)D(�) for some π ∈WL

0 (p
∞).

We note that
X∗((Gm)Q[π]/Q) = ZHom(Q[π],Q

al)

and that the map
ZHom(Q[π],Q

al) −→WL
0 (p

∞)

is χ �→ χ(π).
Let π ∈ WL

0 (p∞) be represented by (π′, n), π′ ∈ WL
0 (pn). By definition, Q[π] =

Q[π′N ] for all N >> 1. If π is fixed by D(�), then the elements of D(�) multiply π′

by roots of 1, and so π′N is fixed by D(�) for all N >> 1. Hence Q[π] (as a subfield
of Qal) is fixed by D(�), and if we denote the given inclusion Q[π] ↪→ Qal by σ0,
then π is the image of the element χ = σ0 ∈ (ZHom(Q[π],Q

al))D(�), which proves (**).
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Thus we have a tensor equivalence S1 : T → T′ sending π to π′. If S2 is sec-
ond such equivalence, then Hom⊗(S1, S2) is a torsor for Aut⊗(S1) = P . But
H1(Q, P ) = 0, and so the torsor is trivial. Therefore, there exists a tensor isomor-
phism α : S1 → S2. A second such isomorphism α′ is of the form α′ = α ◦ β where
β is a tensor automorphism of S1. But this is an element of P (Q). The next lemma
implies that P0(Q) = 0, and so P (Q) = Q×. �

Lemma 3.16. For any torus T over Q, T̃ (Q) = 0.

Proof. An element of T̃ (Q) is a family (an)n≥1, an ∈ T (Q), such that an = (amn)m.
In particular, an is infinitely divisible. If T = (Gm)L/Q, then T (Q) = L×, and
∩L×m = 1. Every torus T can be embedded in a product of tori of the form
(Gm)L/Q, and so again ∩T (Q)m = 1. �

Remark 3.17. (a) We shall prove in (3.32) below, that, without assuming any con-
jectures, there does exist a pair (T, π) satisfying (3.12).

(b) The same proof shows that the pair (Mot0(F), π) is characterized by the con-
ditions (3.12) (with π required to be a Weil pn-number of weight 0 in (3.12.2)) up to
a tensor equivalence which itself is uniquely determined up to unique isomorphism.

(c) The category Mot(F) has a canonical Tate object T and a canonical isomor-
phism class of objects

{h1(A) | A a supersingular elliptic curve over F}.

There is a unique polarization Π onMot(F) such that, wheneverA is a supersingular
elliptic curve, Π(h1(A)) is the set of Weil forms defined by a polarization of A. For
a ∈ Q×, w(a) acts on T as a−2, and w(−1) maps Π to a different polarization.
Consequently, the system (Mot(F), π, T, {h1(A)},Π) is uniquely determined up to
a tensor equivalence (preserving π, T , {h1(A)}, and Π) which itself is uniquely
determined up to a unique isomorphism.

Characterization of Mot(F) and its fibre functors.

We now characterize Mot(F) together with its standard fibre functors. Consider a
triple (T, π, ω) where
(3.18.1) T is a semisimple Tannakian category over Q for which there exists a

tensor functor ω∞ : T→ V∞ preserving weights;
(3.18.2) π is a germ of an endomorphism of idT for which there exists an isomor-

phism γ : P → π(T) sending f to π;
(3.18.3) ω = (ωp, ωp) with ωp a fibre functor over A

p
f and ωp an exact tensor

functor T→ Vp(F) such that, for each object X of T, ωp(fX ) = πωp(X).

The system (Mot(F), π, ω) satisfies these conditions, and the next theorem shows
that they determine it up to equivalence.

Theorem 3.19. Suppose (T, π, ω) and (T′, π′, ω′) are two triples satisfying (3.18).
There exists an equivalence of tensor categories S : T→ T′ carrying π into π′ and
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isomorphisms s = (sp, sp) of fibre functors on T

sp : ωp −→ ω′p ◦ S
sp : ωp −→ ω′

p ◦ S.

Proof. By assumption,
π(T) = P = π(T′),

and an equivalence S : T → T′ of tensor categories will map f to f ′ if and only if
it induces the identity map on P . There exists such an S if and only if T and T′

have the same cohomology class in H2(Q, P ). Because Ker2(Q, P ) = 0, it suffices
to check this locally. By assumption, there is a functor ω∞ : T ⊗ R → V∞ such
that the map π(V∞)→ π(T) is the weight map w : Gm → P . Therefore the class
of T⊗R in H2(R, P ) is the image of the class of V∞ in H2(R,Gm) under the map
defined by w. Similarly, the functor ωp : T→ Vp(F) determines the class of T⊗Qp

in H2(Qp, P ). Finally, the assumption that there is a fibre functor over Q� for all
� 
= p,∞, implies that the class of T in H2(Q�, P ) is zero. Hence S exists.

Because H1(Q, P ) = 0, the functor S is unique up to isomorphism.
Choose one S. Then ωp and ω′

p ◦ S are both fibre functors on T, and
Hom⊗(ωp, ω′

p ◦ S) is a torsor for P over Qp. Since H1(Qp, P ) = 0, we see that
there is an isomorphism sp : ωp → ω′

p ◦ S. The proof that sp exists is similar. �

For the subcategory Mot0(F) of motives of weight zero, we can be a little more
precise.

Theorem 3.20. Let (T, π, ω) and (T′, π′, ω′) be two triples satisfying the condi-
tions (3.18) with P replaced by P0. There exists an equivalence of tensor categories
S : T→ T′ carrying π into π′ and isomorphisms s = (sp, sp) of fibre functors on T

sp : ωp −→ ω′p ◦ S
sp : ωp −→ ω′

p ◦ S.
Any two such pairs (S1, s1) and (S2, s2) are isomorphic, i.e., there is an isomorphism
of tensor functors α : S1 → S2 such that the following diagram commutes for all
objects X of T:

ω(X) ω(X)

s1

� s2

�
ω′(S1(X))

ω′(α(X))−−−−−−→ ω′(S2(X)).

Proof. The same proof as for (3.19) shows that there exists a pair (S, s).
Consider two pairs (S1, s1) and (S2, s2). We know from (3.13) that there is an

isomorphismα : S1 → S2 of tensor functors. Both ω′(α)◦s1 and s2 are isomorphisms
of fibre functors ω → ω′◦S2, and hence they differ by an automorphism of ω, i.e., by
an element of P0(Af ). Thus it remains to prove that P0(Af ) = 1. This is achieved
by the next lemma. �
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Lemma 3.21. Let T be a torus over Q such that T (R) is compact. Then T̃ (Af ) = 1.

Proof. Because T (R) is compact, T (Q) is discrete in T (Af ), and the quotient
T (Af )/T (Q) is compact. Therefore, ignoring finite groups, the quotient is iso-
morphic to T (Ẑ), and ∩T (Ẑ)N = 1. �

For the much simpler category E we have only the following result. Consider
pairs (T, ω) where
(3.22.1) T is polarizable Tate triple over Q having no fibre functor over R for

which the weight map is an isomorphism w : G→ π(T);
(3.22.2) ω = (ωp, ωp) with ωp a fibre functor over A

p
f and ωp an exact tensor

functor T → Vp(F) such that if X has weight m, then ωp(X) has slope
m/2.

For example, (E, ω) is such a pair.

Proposition 3.23. Suppose we have two pairs (T, ω) and (T′, ω′) satisfying (3.22).
Then there exists an equivalence of Tate triples S : T → T′ and an isomorphism
s : ω → ω′ ◦ S of tensor functors.

Proof. Straightforward. �

Unfortunately, two such pairs (S1, s1) and (S2, s2) need not be isomorphic, be-
cause we can replace s1 with its product by an element of a ∈ A×

f , and the resulting
pair will not be isomorphic to the original pair unless a ∈ Q×.

The groupoid attached to Mot(F).
We shall need the notion of a groupoid in schemes (see Deligne 1989, §10; Deligne
1990, §3; Milne, 1992, Appendix A; Breen 1992).

Let S0 = Spec k, where k is a field of characteristic zero, and let S = Spec kal. An
S/S0-groupoid is a scheme G over S0 together with two S0-morphisms s, t : G→ S
and a law of composition (morphism of S ×S0 S-schemes)

◦ : G×s,S,t G −→ G

such that, for all schemes T over S0, (S(T ),G(T ), (t, s), ◦) is a groupoid in sets,
i.e., S(T ) is the set of objects and G(T ) the set of morphisms for a category whose
morphisms are all isomorphisms (t and s map a morphism to its target and source
respectively, and ◦ gives the composition). A groupoid is said to be affine if it is an
affine scheme, and it is said to be transitive if the map (t, s) : G→ S×S0 S makes G
into a faithfully flat S×S0 S-scheme. We refer to (Deligne 1990, 1.6), for the notion
of a representation of a groupoid over S. The collection of such representations
forms a Tannakian category Rep(S : G) over k.
Henceforth, all groupoids will be affine and transitive.
The kernel of an S/S0-groupoid is

G =df G∆ =df ∆∗G, ∆: S −→ S ×S0 S (diagonal morphism).
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Under our assumptions, it is a faithfully flat affine group scheme over S.
Let T be a Tannakian category over k, and let ω be a fibre functor over kal.

Write Aut⊗(ω) for the functor sending an S ×S0 S-scheme (b, a) : T → S ×S0 S to
the set of isomorphisms of tensor functors a∗ω → b∗ω.

Theorem 3.24. Let T be a Tannakian category over k, and let ω be a fibre functor
of T over kal; then Aut⊗(ω) is represented by an S/S0-groupoid, and ω defines an
equivalence of tensor categories T → Rep(S : G). Conversely, let G be an S/S0-
groupoid, and let ω be the forgetful fibre functor of Rep(S : G); then the natural
map G→ Aut⊗(ω) is an isomorphism.

Proof. See (Deligne 1990, 1.12). �

Remark 3.25. (a) Let G be the groupoid attached to (T, ω). Then G =df G∆ is an
affine group scheme over S with a canonical “descent datum up to inner automor-
phisms”, i.e., it represents a band (see Milne 1992, p223). In fact it represents the
band of the gerb of fibre functors of T. In the case that the band is commutative,
the descent datum defines an affine group scheme over k, which can be identified
with π(T).

(b) Assume G has a section over S ×S0 S. Then the map

G(S)
(t,s)−−−→ (S ×S0 S)(S) = Gal(kal/k)

is surjective and the law of composition on G defines a group structure on G(S) for
which following sequence is exact:

1 −→ G(S) −→ G(S) −→ Gal(kal/k) −→ 1.

Example 3.26. The C/R-groupoid G∞ associated with V∞ and the forgetful fibre
functor has kernel Gm, and the associated exact sequence

1 −→ C× −→ G∞(C) −→ Gal(C/R) −→ 1

identifies G∞(C) with the real Weil group.

Example 3.27. Let G be a group scheme over k. The neutral S/S0-groupoid defined
by G is

GG =df G×S0 (S ×S0 S).

The associated exact sequence is

1 −→ G(kal) −→ G(kal) � Gal(kal/k) −→ Gal(kal/k) −→ 1.

Let T be a Tannakian category over k with a fibre functor ω over k, and let G =
Aut⊗(ω); then the groupoid attached to T and ω ⊗ kal is GG.
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Example 3.28. The Qal
p /Qp-groupoid Gp attached to Vp(F) has kernel G, the uni-

versal covering group of Gm. If M is an isocrystal over F of slope λ, then G acts
on M through the character λ ∈ Q = X∗(G).

Choose for each prime � a commutative diagram:

Qal injective−−−−−→ Qal
�� �

Q
injective−−−−−→ Q�

For � =∞, Q� = R and Qal
� = C. On pulling back a Qal/Q-groupoid P by the map

Spec(Qal
� ⊗Q� Qal

� )→ Spec(Qal ⊗Q Qal)

we obtain a Qal
� /Q�-groupoid P(�).

Write z∞ for the weight homomorphism G∆
∞ = Gm → P (p∞)R (corresponding

to the map W (p∞)→ Z sending π to its weight).
Write zp for the homomorphism G∆

p = G→ P (p∞)Qp corresponding to the map
π �→ ordp(πn)/n : W (p∞)→ Q, where (πn, n) represents π and ordp is the extension
of the p-adic valuation on Q corresponding to the chosen embedding of Qal into Qal

p .

For � 
= p,∞, write G� for the trivial Qal
� /Q�-groupoid Spec(Qal

� ⊗Q� Qal
� ), and z�

for the unique homomorphism G∆
� = 1→ P (p∞)Q� .

Theorem 3.29. Let M(ω) be the Qal/Q-groupoid defined by a fibre functor ω of
Mot(F) over Qal. Then

(a) the kernel of M(ω) is P (p∞);
(b) for each prime � of Q (including p and ∞), there is a homomorphism

ζ� : G� → M(ω)(�), well defined up to isomorphism, whose restriction to
the kernel is z�.

If M(ω′) is the groupoid attached to a second fibre functor over Qal, then the
choice of an isomorphism ω ≈ ω′ determines an isomorphism α : M(ω) → M(ω′)
whose restriction to the kernel is the identity map; moreover α(�) ◦ ζ� ≈ ζ ′�, and
changing the isomorphism between the fibre functors replaces α with an isomorphic
isomorphism.

Proof. That M(ω)∆ = P (p∞) follows from (3.25a) and (2.38). The homomor-
phism ζ� : G� →M(ω)(�) is induced by the choice of an isomorphism ω⊗Qal Qal

� →
ω�⊗Q� Qal

� . The rest of the proof is a a straightforward application of the theory of
Tannakian categories, using what has already been proved. �

Remark 3.30. A fibre functor ω of Mot(F) over Qal defines by composition a fibre
functor ω′ of Mot(Fq) over Qal. The groupoidM(ω′) attached to Mot(Fq) and ω′

is obtained fromM(ω) by pushing out with respect to P (p∞)→ P (q) (see Deligne
1989, 10.8, for the “push-out” of a groupoid).
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Existence results.

Now drop the assumption of the Tate conjecture (1.14).

Theorem 3.31. There exists a system (P, (ζ�)) consisting of a Qal/Q-groupoid P
such that P∆ = P (p∞) and a family of morphisms ζ� : G� → P(�) such that ζ∆� = z�.
If (P′, (ζ ′�)) is second such system, then there is an isomorphism α : P → P′ such
that α∆ = id and ζ ′� ≈ α◦ζ�; moreover, α is uniquely determined up to isomorphism.

Proof. Let c� be the cohomology class of the groupoidG� inH2(Q�, G�). I claim that
there is a unique class c ∈ H2(Q, P ) mapping to z�(c�) for all �. Since P = P0⊕Gm,
it suffices to prove this for each factor. But

H2(Q, P0)
≈−→ ⊕�H2(Q�, P0)

and so this is obvious on the first factor. On the other hand, z�(c�) = 0 (in
H2(Q�,Gm)) for � 
= p,∞ , and

invp(zp(cp)) =
1
2
= inv∞(z∞(c∞)),

and so it is also obvious for the second factor. Choose a groupoid P corresponding
to c.

If (P′, (ζ ′�)) is a second pair, then the existence of the maps ζ ′� implies that the
cohomology class of P′ is the same as that of P locally, and hence (see 3.11d)
globally. Therefore, there is an isomorphism α : P → P′ that is the identity map
on the kernel. The scheme Hom⊗(α ◦ ζ�, ζ ′�) is a torsor for PQ� . Now (3.11b) shows
that we can modify α by a global torsor (unique up to isomorphism) and force the
local torsors to be trivial; then α ◦ ζ� ≈ ζ ′�. �

Corollary 3.32. There exists a Tate triple (T, w, T ), a germ of a tensor endo-
morphism π of T, and a pair ω = (ωp, ωp) such that the system (T, π, ω) satisfies
the conditions (3.18).

Proof. Take T = Rep(S : P). The weight homomorphism Gm → P defines a
weight filtration on T. The action of f defines π, and the homorphisms ζ� define
ω. �

Notes. The form of the statement of Theorem 3.13 was suggested by a general
remark of Grothendieck on the classification of Tannakian categories. Theorems
3.19 and 3.20 were explained to me by Deligne (who credits them to Grothendieck),
and Theorem 3.31 is proved in (Langlands and Rapoport, 1987).

§4. The Reduction of CM-Motives to Characteristic p

Hodge structures of CM-type.
The Mumford-Tate group MT(H) of a polarizable rational Hodge structure H =
(V, h) is the algebraic group attached to the forgetful fibre functor on the Tannakian
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subcategory of HdgQ generated by H and Q(1). It can also be described as the
largest algebraic subgroup of GL(V ) × Gm fixing the Hodge tensors of V , or the
smallest algebraic subgroup G of GL(V )×Gm such that GC contains the image of

z �→ (µh(z), z) : Gm −→ GL(V ⊗ C)×Gm.

Here µh : Gm → GL(V ⊗ C) is the homomorphism such that µh(z) acts on V r,s as
multiplication by z−r. The Mumford-Tate group is connected and reductive.

A polarizable rational Hodge structure (V, h) is said to be of CM-type if its
Mumford-Tate group is commutative, and hence is a torus T . We regard z �→
(µh(z), z) as a cocharacter µ of T .

Proposition 4.1. A pair (T, µ) arises as above from a rational Hodge structure
of CM-type if and only if

(a) the weight −µ− ιµ of µ is defined over Q;
(b) µ is defined over a CM-field; and
(c) µ generates T , i.e., there does not exist a proper subtorus T ′ of T such that

T ′
C contains the image of µ.

Proof. See (Deligne 1982, pp 42-47). �

For a CM-field L ⊂ C, let SL be the quotient of (Gm)L/Q having character group

X∗(SL) = {λ ∈ ZHom(L,C) | λ(τ ) + λ(ιτ ) = constant}.

Define µL to be the cocharacter of SL such that

< λ, µL >= λ(τ0), all λ ∈ X∗(SL),

where τ0 is the given embedding of L into C. If L ⊂ L′ ⊂ C, the norm map defines
a homomorphism SL

′ → SL carrying µL
′
to µL. We define

S = lim←−S
L, µcan = lim←−µ

L.

The pair (S, µcan) is called the Serre group. If Qcm denotes the union of all CM-
subfields of Qal, then X∗(S) can be identified with the set of all locally constant
functions

λ : Gal(Qcm/Q) −→ Z

such that λ(τ ) + λ(ιτ ) = −m for some integer m (called the weight of λ).

Proposition 4.2. The rational Hodge structures of CM-type form a Tannakian
subcategory HodcmQ of HdgQ. The affine group scheme attached to the forgetful
fibre functor is S.

Proof. Since Aut⊗(ωforget) = lim←−MT(H) where H ranges over the Hodge structures
of CM-type, this follows from (4.1) and the next lemma. �
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Lemma 4.3. Let (T, µ) be a pair satisfying the conditions (a) and (b) of (4.1).
Then there is a unique homomorphism ρµ : S → T (defined over Q) such that
(ρµ)Q ◦ µcan = µ; moreover

(S, µcan) = lim←−(T, µ)

where the limit is over all pairs (T, µ) satisfying (4.1a,b,c).

Proof. When restated in terms of character groups, the lemma becomes obvious. �

Remark 4.4. Let T be a torus over a field k of characteristic zero. If k is algebraically
closed, then each character χ of T defines a one-dimensional representation V (χ)
of T over k, and every irreducible representation is isomorphic to V (χ) for exactly
one χ; consequently

Σ(Repk(T )) = X∗(T ).

More generally, Repk(T ) is a semisimple Tannakian category over k, and
Repk(T )⊗ kal = Repkal(T ). Therefore (3.14) shows that there is a bijection

Γ\X∗(T ) −→ Σ(Repk(T )), Γ = Gal(kal/k),

under which a simple representation V of T over k corresponds to the set of char-
acters occurring in V ⊗k kal.
Motives of CM-type. For an abelian variety (or motive) A over C, theMumford-
Tate group of A is defined to be Mumford-Tate group of HB(A) =df H1(A,Q).

A simple abelian variety A over an algebraically closed field k is said to be of
CM-type if End(A) ⊗ Q is a field of degree 2 dimA over Q, and a general abelian
variety over k is said to be of CM-type if its simple (isogeny) factors are. An abelian
variety over an arbitrary field k is of CM-type6 if it becomes of CM-type over kal.

Proposition 4.5. An abelian variety over C is of CM-type if and only if the
rational Hodge structure HB(A) is of CM-type.

Proof. See (Deligne 1982, 5.1). �

Proposition 4.6. The category HdgcmQ is generated by

{HB(A) | A an abelian variety of CM-type over C}.

Proof. We have to show that RepQ(S) is generated by the representations of S
on {HB(A)}. For this, it suffices to show that X∗(S) is generated by the set of
characters arising from abelian varieties of CM-type over C.

Let L ⊂ Qcm be Galois over Q. A CM-type Φ for L is a function Φ: Hom(L,C)→
{0, 1} such that Φ+ιΦ = id. An abelian variety A over C together with a homomor-
phism L→ End(A)⊗Q is said to be of CM-type (L,Φ) ifHB(A) is a one-dimensional

6Some authors prefer to say “potentially of CM-type”.
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vector space over L and the representation of L on the tangent space to A at 0 is
equivalent to

∑
Φ(ϕ)ϕ. An abelian variety of CM-type (L,Φ) always exists, and for

such a variety A, Φ, when regarded as a character of S, occurs in the representation
of S on HB(A)⊗Qal.

Thus it suffices to show that, for any CM-field L Galois over Q,
X∗(SL) is generated by CM-types. Choose a set of representatives R =
{ϕ1, . . . , ϕg} for Hom(L,C)/{1, ι}, and let Φj be the CM-type with support
{ϕ1, . . . , ϕj−1, ιϕj , ϕj+1, . . . , ϕg}. For any λ ∈ X∗(S), λ −∑g

i=1 λ(ιϕi)Φi takes
the value 0 on any element of ιR, and hence is a multiple of the CM-type Φ having
support R. �

For any variety V over a field k of characteristic zero and integer r, Deligne has
defined a space Ar

aH(V ) of absolute Hodge cycles of codimension r on V (Deligne
1982, p36). When k = C, there are maps

Ar(V )← Zr(V )→ Ar
aH(V ) ⊂ Ar

H(V )

where Ar
H(V ) is the space of Hodge cycles of codimension r. The Hodge conjecture

asserts that the map Zr(V ) → Ar
H (V ) is surjective, which implies that it has the

same kernel as Zr(V )→ Ar(V ), and hence induces isomorphisms

Ar(V ) ≈−→ Ar
aH(V ) ≈−→ Ar

H(V ).

Fix a field k of characteristic zero. Analogously to CV0(k) we can define a
category having one object h(V ) for each smooth projective variety V over k, and
having the absolute Hodge cycles as morphisms, i.e.,

Hom(h(V ), h(W )) = Adim V
aH (V ×W ).

On adding the images of projectors and inverting the Lefschetz motive, we obtain
a Q-linear tensor category. In this case, the Künneth components of the diagonal
are automatically morphisms, and so we can define a gradation on the category and
use it to modify the commutativity constraint. In this way we obtain the category
MotaH(k) of motives over k for absolute Hodge cycles (see Deligne and Milne 1982,
§6).

Define CM(k) to be the Tannakian subcategory of MotaH(k) generated by the
objects h1(A) for A an abelian variety of CM-type over k, the Tate motive, and the
objects h(V ) for V a finite scheme over k. We refer to the objects of CM(k) as
CM-motives over k.

Proposition 4.7. For any algebraically closed field k ⊂ C, the functor

X �→ HB(XC) : CM(k) −→ HdgcmQ

is an equivalence of Tannakian categories.

Proof. Assume first that k = C. The main theorem of (Deligne 1982) shows that
for abelian varieties A and B over C,

Ar
aH(A ×B) = Ar

H(A ×B),
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and therefore
Hom(h1(A), h1(B)) = Hom(HB(A),HB (B)).

That X �→ HB(X) is fully faithful is now obvious, and (4.6) shows that it is essen-
tially surjective.

Now consider an arbitrary algebraically closed field k ⊂ C. For any smooth
projective varieties V and W over k,

Ar
aH(V ×W ) = Ar

aH(VC ×WC)

(ibid. 2.9a) and so the functor

X �→ XC : MotaH(k) −→MotaH(C)

is fully faithful. Hence its restriction to CM(k) is also fully faithful, and because
every abelian variety of CM-type over C has a model7 over k, it is also essentially
surjective. �

Corollary 4.8. For any algebraically closed field k ⊂ C, the affine group scheme
attached to the fibre functor HB on CM(k) is S. Hence

π(CM(k)) = S

and
Σ(CM(k)) = Σ(RepQ(S)) = Γ\X∗(S).

Proof. Immediate consequence of (4.7), (4.2), and (4.4). �

Remark 4.9. In fact, for any algebraically closed field k of characteristic 0, CM(k)
is a neutral Tannakian category over Q, and the affine group scheme attached to
any fibre functor ω over Q is canonically isomorphic to S. In more detail, each
object of CM(k) has a (de Rham) filtration, and there is a unique isomorphism
α : S → π(CM(k)) such that α ◦ µcan splits the de Rham filtration on each X.

Discussion of the problem of reducing CM-motives.

For the rest of this section, we fix a prime w0 of Qal lying over p, and define Qal
p to

be the algebraic closure of Qp in the completion of Qal at w0. We take F to be the
residue field of Qal

p .

Let A be an abelian variety over Qal of CM-type. Then A will be defined over a
number field K, and it follows easily from Néron’s criterion for good reduction that,
after we pass to a finite extension L of K, A will acquire good reduction at w0 (see
Serre and Tate 1968, Theorem 6). We therefore obtain an abelian variety A(w0)
over the residue field k(w0) of w0 in L, and, by extension of scalars, we obtain an
abelian variety A(p) over F.

7An abelian variety A over C of CM-type will have a specialization over k that is of the same

CM-type as A, and hence becomes isogenous to A over C
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Lemma 4.10. The abelian variety A(p) is well-defined by A (up to a canonical
isomorphism).

Proof. Consider two models (A1, ϕ1) and (A2, ϕ2) of A over number fields K1 and
K2. There will be a number field L containing both K1 and K2 and such that

(a) A1 and A2 both acquire good reduction over L at w0;
(b) the map ϕ =df ϕ2 ◦ ϕ−1

1 : (A1)Qal → (A2)Qal is defined over L.
Now the reduction of ϕ is an isomorphism A1(p)→ A2(p). �

In this way, we obtain a functor A �→ A(p) from the category of abelian varieties
of CM-type over Qal to the category of abelian varieties over F.

Consider a CM-motive X over Qal. After replacing X with X(m) for some m,
there will exist a CM-motive Y and abelian varieties Ai of CM-type such that

X ⊕ Y = ⊗h1(Ai),

i.e., X = (⊗h1(Ai), q) for some projector q. If q is algebraic, then we can define
X(p) to be (⊗h1(Ai(p)), q(p)). Consequently, if the Hodge conjecture holds for
abelian varieties of CM-type, then there is a functor

R = (X �→ X(p)) : CM(Qal)→Mot(F)

such that, for any abelian variety A of CM-type over Qal, h(A)(p) = h(A(p)). In
particular, we will obtain the following:

(a) a map Σ(CM(Qal))→ Σ(Mot(F));
(b) a map π(Mot(F))→ π(CM);
(b) for all �, a functor ω� ◦R(�) : CM(Qal)⊗Q� → V�;
Recall that, under the assumption of the Tate conjecture, we showed that

Σ(Mot(F)) = Γ\W (p∞) and π(Mot(F)) = P (p∞). We shall construct a canoni-
cal homomorphism γ : P (p∞) → S, a canonical map Γ\X∗(S) −→ Γ\W (p∞), and
canonical functors

ξ� : RepQ�(S) = CM(Qal)⊗Q� −→ V�.

Then we show that if (T, π, ω) is a triple satisfying the conditions (3.18), there is a
functor

R : CM(Qal) −→ T

such that π(R) = γ and ω� ◦R(�) ≈ ξ�.

The map on isomorphism classes.

Lemma 4.11. Let L be a CM-field that is Galois over Q, and let w0 be a prime of
L lying over p. Let h be such that phw0

is principal, let r = (U : U+) where U is
the group of units in L and U+ is the subgroup of totally real units, and let f be
the residue class degree f(w0/p). Let a be a generator of phw0

. For any n divisible
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by 2hrf and χ ∈ X∗(SL), χ(a−n/hf ) is independent of the choice of a, and lies in
WL(pn).

Proof. Straightforward. �

Thus we have a well-defined map

χ �→ πLn (χ) = χ(an/hf ) : X∗(SL) −→ W (pn).

For a fixed L, these maps define a homomorphism

χ �→ πL(χ) : X∗(SL) −→ W (p∞),

and when we let L vary over the CM-subfields of Qal, they define a homomorphism

χ �→ π(χ) : X∗(S) −→ W (p∞).

This map is invariant under the action of Γ = Gal(Qal/Q), and so we have proved
the following result.

Proposition 4.12. (a) There is a canonical homomorphism

γ : P (p∞) −→ S.

(b) There is a canonical homomorphism

Σ(CM(Qal)) = Γ\X∗(S)
[χ]�→[π(χ)]−−−−−−−→ Γ\W (p∞) = Γ\Σ(Mot(F)).

Proposition 4.13. The homomorphism in (4.12) is compatible with the reduction
of abelian varieties of CM-type, i.e., if χ is the character of S associated with a simple
abelian variety of CM-type A over Q, then [π(χ)] is the Frobenius element of A(p).

Proof. This is a restatement of the theorem of Shimura and Taniyama (Shimura
and Taniyama, 1961, p110, Theorem 1). �

Remark 4.14. Let X∗(SL)0 be the subset of X∗(SL) of elements of weight 0. For
any n divisible by hrf , the composite

X∗(SL)0
π−→WL

0 (q)/torsion
α−→ ⊕w|pZw,

where α is as in (2.27b), is

λ �→∑
(
∑

σw0=w
λ(σ))w.

The image of this map is equal to the kernel of β, which completes the proof of
(2.27b). This remark also proves that the map X∗(S) → W (p∞) is surjective. In
conjunction with the Hodge and Tate conjectures, this implies that the reduction
functor

CM(Qal) −→Mot(F)

is surjective: every motive over F lifts to a motive of CM-type.
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The functor CM(Qal)⊗ R→ V∞.

Let (V, ρ) be a real representation of S. Then w(ρ) =df wcan ◦ ρ defines a gradation
on V ⊗ C. Let F be the map

v �→ ρ(µ(i)−1)v̄ : V ⊗ C −→ V ⊗ C.

Clearly F is semilinear, and F 2 is multiplication by µ(i)µ(i) = w(−1). Therefore it
acts as (−1)m on the mth graded piece, and so (V (ρ)⊗ C, α) is an object of V∞.

Proposition 4.15. The above construction defines a tensor functor
ξ∞ : RepR(S)→ V∞.

Proof. Straightforward. �

The functor CM(Qal)⊗Q� → V�(F), � 
= p,∞.
Let X be a CM-motive over Qal. ThenX will have a model over a finite extension L
of Q, and, after replacing L with a finite extension, we may assume that the action
of Gal(Qal/L) on ω�(X) is unramified at w0. Therefore, we obtain a representation
of D(w0)/I(w0) = Gal(F/Fq) on ω�(X).

Proposition 4.16. The germ of a representation of Gal(F/Fp) on ω�(X) given by
the above construction is independent of the choices involved. In this way we obtain
a canonical functor

ξ� : CM(Qal)⊗Q� → V�(F).

Proof. Straightforward. �

Remark 4.17. It is possible to give a direct construction (i.e., without mentioning
CM-motives) of ξ�. The construction uses the Taniyama group and a result of
Grothendieck (Serre and Tate 1968, p515).

The functor CM(Qal)⊗Qp → Vp(F).

Let (V, ρ) be a representation of S over Qp. Then ρ will factor through SL for
some L ⊂ Qcm. Choose a generator a for the maximal ideal in Lw0, and let b =
NmLw0/K

(µL(a−1)) ∈ SL(K) where K is the maximal unramified extension of Qp

contained in Lw0. Define

M = V ⊗K(F), F (x) = (1⊗ σ)(bx).

Proposition 4.18. The above construction defines a tensor functor

ξp : RepQp(S) −→ Vp(F).

Proof. Straightforward. �

Remark 4.19. The functor ξp defines a homomorphism G→ S on the fundamental
groups. The corresponding map on the character groups is

X∗(SL) −→ Q, λ �→ −[Lw0 : Qp]−1 ·
∑

σ∈D(w0)

λ(σ)

where D(w0) ⊂ Gal(L/Q) is the decomposition group.
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The cohomology of S.

It is convenient at this point to compute the cohomology of S.

Lemma 4.20. Let L be a CM-field, with largest totally real subfield F . There is a
canonical exact sequence

1 −→ (Gm)F/Q −→ (Gm)L/Q ×Gm −→ SL −→ 1.

Proof. It suffices to check that the corresponding sequence of character groups is
exact, but this follows from the fact that the map

ZHom(L,C) × Z→ ZHom(F,C), ∑
τ∈Hom(L,C)

λ(τ )τ,m

 �→ ∑
τ∈Hom(L,C)

λ(τ )τ |F −m

 ∑
τ∈Hom(F,C)

τ


is surjective with kernel X∗(SL). �

Proposition 4.21. For any CM-field L,

H1(Q, SL) ≈−→ ⊕�H1(Q�, S
L),

H2(Q, SL) ↪→⊕�H2(Q�, S
L).

Proof. Consider the following exact commutative diagram:

0 0� �
H1(Q, SL) −→ ⊕�H1(Q�, S

L)� �
0 −→ Br(F ) −→ ⊕vBr(Fv) −→ Q/Z −→ 0� � �
0 −→ Br(L)× Br(Q) −→ ⊕wBr(Lw)×⊕�Br(Q�) −→ Q/Z×Q/Z −→ 0� �

H2(Q, SL) −→ ⊕�H2(Q�, S
L)� �

0 0
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The columns are the cohomology sequences over Q and Q� of the exact sequence in
(4.20), and the two middle rows come from class field theory. The vertical map at
right is that making the following diagram commute:

H2(F,C) inv−−−−→
≈

Q/Z�(res,cores) �
H2(L,C)×H2(Q, C)

(inv,inv)−−−−−→
≈

Q/Z×Q/Z.

Here C is the idèle class group and inv is the invariant map of class field theory.
Let m = [F : Q]. It is known that the restriction map

H2(Q, C) −→ H2(F,C)

induces multiplication by m on Q/Z. Because

cores ◦ res = m

we see that cores must induce the identity map on Q/Z. Therefore the map at right
is injective, and now the snake lemma completes the proof.

The functor CM(Qal)→Mot(F).

Theorem 4.22. Let (T, π, ω) be a triple satisfying the conditions of (3.18). Then
there exists a tensor functor

R : CM(Qal)→ T

such that

(a) the homomorphism P → S defined by R on the fundamental groups is equal
to the map γ in (4.12a).

(b) for all �, the composite

CM(Qal)⊗Q�
R−→ T⊗Q�

ω�−→ V�

is isomorphic to the functor ξ�.

Any other tensor functor with these properties is isomorphic to R.

Proof. We first should note that the two conditions are compatible, i.e., the map

G�
z�−→ PQ�

γ−→ SQ�

is equal to that induced by ξ� on the fundamental groups. Only the prime � = p
presents difficulties, but this case follows easily from the formula in (4.19).
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There exists a tensor functor satisfying (a) if and only if the class ofT inH2(Q, P )
maps to zero in H2(Q, S). After (4.21), it suffices to check this in the local coho-
mology groups H2(Q�, S).

Consider
H2(Q�, G�)

z�−→ H2(Q�, P ) −→ H2(Q�, S).

The existence of the functors ω� shows that the class of T in H2(Q�, P ) is the image
of the class of V� in H2(Q�, G�). But the existence of the functors ξ� show that this
class maps to zero in H2(Q�, S).

Hence there exists a functor R : CM(Qal) → T satisfying (a). Then ω� ◦ R(�)
and ξ� are both tensor functors CM(Qal) ⊗ Q� → V�, and Hom⊗(ω� ◦ R(�), ξ�)
is a torsor for S over Q�. According to (4.21), the cohomology classes of these
torsors arise from a unique element of H1(Q, S), which we use to modify R. Then
R satisfies (b), and is uniquely determined up to isomorphism. �

Remark 4.23. Consider a pair (R, (r�)) where R is a tensor functor CM(Qal)→ T
and r� is an isomorphism ω� ◦R(�)→ ξ�. If (R′, (r′�)) is a second such pair, then the
theorem tells us there exists an isomorphism α : R→ R′, but it may not be possible
to choose α to be carry r� into r′�.

Notes. This section gives a geometric re-interpretation of the cocycle calculations
in (Langlands and Rapoport 1987, pp 118-152).
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